
Theoretical Toys
Xiao Liang

 https://xiao-liang.com
(Updated on August 10, 2024)

1 Approximation 1
1.1 The Uncommon Friends of Big O . 1

1.1.1 Soft-O, Quasi-Linear . 1
1.1.2 Quasi-Polynomial, Sub-Exponential and Complexity Leveraging 1
1.1.3 The Iterated Logarithm . 2

1.2 Useful Asymptotics . 2
1.2.1 Harmonic Numbers . 2
1.2.2 Some Asymptotics from Taylor Series . 3
1.2.3 Stirling’s Formula . 3

1.3 Bounds for Binomial Coefficients . 4

2 A Minimalist Treatise on Analysis 7
2.1 Basic Concepts in Set Theory . 7
2.2 On Mathematical Spaces . 8

2.2.1 Three Major Spaces . 8
2.2.1.1 Topological Space . 8
2.2.1.2 Measure Space . 9
2.2.1.3 Metric Space . 9

2.2.2 Metric Space vs Topological Space . 9
2.2.3 Measure Space vs Topological Space . 10
2.2.4 Measure Space vs Metric Space . 10

2.3 Basic Concepts in Topology . 10
2.3.1 Basis and Local Basis . 12
2.3.2 Continuity and Compactness . 12
2.3.3 Dense Subsets . 13

2.4 Basic Concepts in Measure Theory . 13
2.4.1 σ-Algebra . 13
2.4.2 Borel σ-Algebra . 14
2.4.3 Measure and Measure Spaces . 15
2.4.4 Outer Measure and Carathéodory’s extension theorem 16
2.4.5 Borel-Cantelli Lemma . 16
2.4.6 The Second Borel-Cantelli Lemma . 18
2.4.7 Lp Space, ℓp Space, and Hölder’s Inequality 19

2.4.7.1 Lp Space . 19
2.4.7.2 ℓp Space . 19
2.4.7.3 Hölder’s Inequality . 20

2.5 Basics Concepts in Metric Space and Functional Analysis 21
2.5.1 Limit, Cauchy Sequence, and Completeness 21
2.5.2 Motivation for Inner Product Space (and Hilbert Space) 23

i

https://xiao-liang.com

3 Algebra from a Modern Point of View 25
3.1 Pre-Group Concepts . 25
3.2 Groups . 25

3.2.1 Quotient Groups . 27
3.2.2 Cyclic Groups . 27
3.2.3 ZN , Z∗N , and RSA . 28
3.2.4 Quadratic Residuosity . 29

3.3 Rings . 30
3.4 Fields . 31
3.5 Modules and Vector Spaces . 31
3.6 Integral Domains . 32

3.6.1 Principal Ideal Domain (PID) . 32
3.6.2 Unique Factorization Domain (UFD) . 33
3.6.3 Euclidean Domain (ED) and GCD Domain 33

3.7 Polynomials . 34
3.7.1 The Ring-Theory Definition . 34
3.7.2 Schwartz-Zipple lemma . 35
3.7.3 The Fundamental Theorem of Algebra . 35
3.7.4 On Fpn : An Application for [Sah99] NIZK . 35
3.7.5 Shamir’s Secret Sharing . 35
3.7.6 Verifiable Secret Sharing . 36

3.8 Discrete Fourier Transform . 36

4 Linear Algebra for Quantum Information Theory 38
4.1 Linear Algebra 101 . 38

4.1.1 The Second Nature . 38
4.1.2 High-Dimension Analog of the Imaginary Unit 39
4.1.3 Inner Product Spaces and the Cauchy-Schwarz Inequality 40
4.1.4 Direct Sum . 41
4.1.5 Tensor Products of Hilbert Spaces . 41
4.1.6 Mixed-Product Property of Kronecker Product 42
4.1.7 Projectors and the Completeness Relation for Orthonormal Basis 43
4.1.8 Normal Operators and Spectral Decomposition 44
4.1.9 Spectral Decomposition and Eigenvalue Decomposition (Diagonalization) in

General . 45
4.1.10 Jordan Normal Form . 46
4.1.11 Singular-Value Decomposition . 47
4.1.12 Two Ways to Formalize Partial Trace . 48
4.1.13 Unique Linear Extension of Convex Linear Operators 49
4.1.14 Ajoint . 49
4.1.15 Bloch Coordinates . 50

4.2 Useful Geometric Properties of Vectors in Hilbert Space 50
4.3 The Four Postulates of Quantum Mechanics . 51
4.4 POVMs and Projective Measurements . 52
4.5 Quantum Operations (aka Channels) from a Mathematical Point of View 54

4.5.1 Stinespring’s Representation of Quantum Channels 54
4.5.2 Choi-Kraus Decomposition of Quantum Channels 55
4.5.3 Axiomatic Definition of Quantum Operations (or the CPTP formalism) . . . 57

ii

4.6 Quantum Fourier Transform . 58
4.7 (In)distinguishability of Quantum States . 60
4.8 Quantum Entropy . 60
4.9 Jordan’s Lemma [Jor75] . 61
4.10 Quantum Circuits . 62

4.10.1 Phase-Shift Gates . 62
4.10.2 Gates from a Group-Theory Viewpoint . 62
4.10.3 Universal Quantum Circuits . 63

4.11 Magic States, Quantum Teleportation, and Transversal Implementation of the T-gate 65
4.12 The Theoretical Framework for Quantum Error Correction 65

4.12.1 Bounds for QECC . 66
4.13 Supplementary Readings for Quantum Computation and Information 67

5 Probability Theory 69
5.1 The Second Nature . 69
5.2 The General Disjunction Rule of Events . 69
5.3 Union Bound and the Probabilistic Method . 70
5.4 Averaging Argument . 71

5.4.1 Exemplary Applications of the Averaging argument 71
5.4.2 Another Example: Hardness Amplification from Weak OWFs to OWFs . . . 74

5.5 Berry-Esseen Theorem . 74
5.6 Concentration Bounds . 74

5.6.1 Markov Inequality . 74
5.6.2 Chebyshev Inequality . 75
5.6.3 Chernoff Bound . 75
5.6.4 An Exemplary Application of Concentrations Bounds: the Goldreich-Levin

Theorem . 76
5.6.5 Hoeffding Inequality . 76

5.7 Stochastic Process . 77
5.7.1 Doob’s Martingale . 77

5.8 Coupon-Collection Problems . 77

6 Entropies 79
6.1 Divergence . 79
6.2 Shanon Entropy and Friends . 79
6.3 Quantum Entropies . 79

6.3.1 Conditional Max and Min Entropies . 79
6.3.2 Entropic Uncertainty Relation . 80
6.3.3 Rényi’s Family of Entropies . 80

7 Number Theory 81
7.1 Prime Number Distribution . 81
7.2 Euler’s Totient Function . 81
7.3 Quadratic Residues . 81
7.4 Composite Residues . 82
7.5 Chinese Remainder Theorem . 83

iii

8 Hash Functions 84
8.1 Collision Resistant Hash Family . 84

8.1.1 Merkle Hashing Trees and the Extraction Lemma 84
8.2 Universal One-way Hash Family . 86
8.3 Universal Hash Family . 86
8.4 Pair-wise Independent Hash Family . 86
8.5 Bloom Filter . 87

9 Pseudorandomness 88
9.1 Leftover Hash Lemma . 88
9.2 Randomness Extractors . 90
9.3 Expander Graphs . 91

10 Lattices 92
10.1 Basic Concepts . 92
10.2 The “Hard-Core” on Lattices . 92

10.2.1 The Shortest Vector Problem . 92
10.3 Crypto-Friendly Lattice Problems . 94

10.3.1 Short Integer Solution (SIS) . 94
10.3.2 Ring-SIS . 94
10.3.3 Learning with Error (LWE) . 95
10.3.4 Learning with Rounding . 96
10.3.5 Ring-LWE . 97

10.4 Two Critical Equations for Lattice-Based Crypto . 97
10.5 Supplementary Readings . 97

11 Coding Theory 99
11.1 Basic Concepts . 99
11.2 The Bounds . 99
11.3 Linear Codes . 100
11.4 Walsh-Hadamard Code . 101
11.5 Reed-Solomon Code . 101
11.6 Coding theory in general . 102
11.7 Non-malleable code . 102

11.7.1 Splite-state non-malleable code . 102
11.8 Randomized encoding (used in [KOS18]) . 102

12 (Classical) Complexity Theory 103
12.1 The Basics . 103

12.1.1 Oblivious TM, Configuration Graphs and Snapshots 105
12.1.2 Transformations between Different Computational Models 105

12.2 Boolean Circuits . 106
12.2.1 Boolean Formulas, CNFs and Universal Gates 106
12.2.2 NC and AC circuits . 108
12.2.3 Branching Program . 110

12.3 Hierarchy: A Fresh Perspective . 110
12.3.1 TM Hierarchy . 110
12.3.2 Circuit Hierarchy and Hard Functions . 111

iv

12.4 Complete Languages: NP, PSPACE, NL and PH . 112
12.4.1 Important Languages and Their Implications 113

12.5 Time-Space Trade off . 114
12.6 Relations among Complexity Classes . 115

13 Quantum Complexity Theory 118
13.1 The Basics . 118
13.2 Hidden Subgroup Problem and Friends . 119

14 Proof Systems: Bridging Crypto and Complexity Theory 121
14.1 PCP Theorem . 121

14.1.1 Exponential-Size PCP . 121
14.1.2 Polynomial-Size PCP . 123

14.2 PCP of Proximity . 123
14.3 Interactive Proofs and Arthur-Merlin Games . 123

14.3.1 Multi-Prover Interactive Proofs . 123

15 Cryptographic Reductions and Impossibility Results 124
15.1 The [RTV04] Taxonomy . 124

15.1.1 Fully-Black-Box Reductions . 124
15.1.2 Semi-Black-Box Reductions . 125
15.1.3 Relativizing Reductions (and “Two-Oracle” Reductions) 125

15.2 Polynomial-Time Reductions with Expected Polynomial-Time Adversaries 128

16 Miscellaneous 131
16.1 Some Superfluous Notes on Negligible Functions . 131

16.1.1 On the Order of Quantifiers . 131
16.1.2 On the Threshold . 132
16.1.3 On the Summation of Negligible Functions 133

Acknowledgments 134

Bibliography 135

FiXme Information 153

v

Chapter 1
Approximation

Some Notations. We use f(x) ∼ g(x) to denote the fact that f(x) = g(x)(1 + o(1)).

1.1 The Uncommon Friends of Big O

1.1.1 Soft-O, Quasi-Linear

The Soft-O notation Õ(n) is a variant of the big-O that “ignores” logarithmic factors. Formally,
f(n) ∈ Õ

(
g(n)

)
if and only if there exists a constant k s.t. O

(
g(n) logk g(n)

)
.

Alternatively, one can use the following definition (e.g., see the introduction of [CKPR01]): Õ
Definition 1.1.1: Soft-O and Soft-Omega

We define Õ and Ω̃ as follows:

• f(n) = Õ(h(n)) if there exist constants c1, c2 > 0 so that for all sufficiently large n, it holds
that f(n) ≤ c1 · h(n) · (logh(n))c2 .

• f(n) = Ω̃(h(n)) if there exist constants c1, c2 > 0 so that for all sufficiently large n, it holds
that f(n) ≥ c1·h(n)

(logh(n))c2 .

It is worth noting that for any constant k and any ε, logk(n) ∈ O(nε) . Therefore, the soft-O
notation is often used to obviate the “nitpicking” within growth-rates that are stated as too tightly
bounded for the matters at hand.

Quasi-linear time is defined as t(n) = Õ(n); in particular, t(n) = O(n logn) is called linearithmic
time. Note that if t(n) is quasi-linear, then t(n) ∈ O(n1+ε) for every constant ε > 0.

1.1.2 Quasi-Polynomial, Sub-Exponential and Complexity Leveraging

Quasi-polynomial time algorithms are algorithms that run longer than polynomial time, yet
not so long as to be exponential time. The worst case running time of a quasi-polynomial time
algorithm is 2O(logc n) for some fixed c > 0.

Sub-exponential time is closely related to quasi-polynomial time. The precise definition of “sub-
exponential” is not generally agreed upon1.

1See this blog post by Scott Aaronson

1

https://www.scottaaronson.com/blog/?p=394

Definition 1.1.2: Sub-Exponential Time

Following are two most widely used definition for sub-exponential time:

1. Function f(n) is sub-exponential if f(n) ∈ O(2n
ε
) for every ε > 0.

2. (Cryptographers’.) Function f(n) is sub-exponential if f(n) ∈ 2o(n).

The first one is used in the olden literature of complexity theory, e.g., [BFNW93, Mil01]. The
second formalism is more modern, e.g., [IP01, Reg04, Kup05]. Cryptographers seem to prefer
the second one. Indeed, the second one captures the running time of the fastest known classical
factoring algorithm (as well as that of the fastest known algorithm for graph isomorphism).

Complexity leveraging is a useful technique in cryptography [CGGM00]. It relies on sub-
exponential assumptions (the second one in Definition 1.1.2). This technique is best demonstrated
by the construction of 2-round SPS ZK protocol from [Pas04, Section 3.5].2 Xiao: Give an overview

Xiao!of this example?

1.1.3 The Iterated Logarithm
The iterated logarithm log∗(n) can be defined by the following recursive formula:

log∗(n) :=
{
0 n ≤ 1

1 + log∗
(

log∗ n
)

n > 1
.

Intuitively, y = log∗(n) denotes the number of times the logarithm function must be iteratively
applied to n before the result is ≤ 1. That is,

bb
··
b︸︷︷︸

y−1 times
≤ n ≤ bb

··
b︸︷︷︸

y times
.

Xiao!Xiao: Talk about [Wee10] as an example.

1.2 Useful Asymptotics

1.2.1 Harmonic Numbers

Harmonic number is defined as Hn =
∑n

i=0
1
i . The following exact bound can be proved by the

“integral trick”.
ln(n+ 1) ≤ Hn ≤ ln(n) + 1.

This also implies that Hn is approximately ln(n), i.e. Hn ∼ ln(n).
The proof of the following fact is left as a simple exercise [Hint: collecting adjacent items in a

“binary fashion”]:
blognc+ 1 ≤ Hn ≤

1

2
dlogne+ 1

The main take-away is: Hn = Θ
(

ln(n)
)
.

2This is the same construction in [Pas03, Section 5]

2

1.2.2 Some Asymptotics from Taylor Series
Let us recall the following Maclaurin Series (Taylor expansion at the origin point a = 0) with some
interesting implications (since we are talking about Maclaurin series, imagine that x is very close
to 0 in the following):

• ln(1 + x) = x−x2

2 +x3

3 −
x4

4 +· · · . (It converges for x ∈ (−1, 1]). This implies that ln(1 + x) ∼ x
when x→ 0.

• ex = 1 + x + x2

2! + x3

3! + · · · . (It converges for all x ∈ R). This implies that ex ∼ 1 + x
when x → 0. A quick way to remember this is: this is the exponential version of the above
ln(1 + x) ∼ x.

• 1
1−x = 1 + x + x2 + x3 + (It converges for x ∈ (−1, 1)). This implies that 1

1−x ∼ 1 + x
when x→ 0.

These examples show how we can get helpful Computer-Science asymptotics from Maclaurin series.
More Maclaurin expansion can be found at this Wikipedia page. In the following, we states more
useful asymptotics obtained by this approach:

• 1
1−ε = 1 + ε±O(ε2)

• (1 + ε)
1
2 = 1 + 1

2ε±O(ε2)

Remark 1.2.1: On the Usage of Big-O

Note that the above use of Big-O notations is different from the standard usage that captures
the behavior of an increasing function when x goes to infinity (called “Infinite Asymptotics”).
Instead, it is used here to describe a decreasing function on a variable x approaching 0. Such
an usage is called “Infinitesimal Asymptotics”. See this Wikipedia page for an explanation. We
remark that both usages can be unified under the same formal definition of the Big-O notation
(via the limit superior).

1.2.3 Stirling’s Formula
We want to study the asymptotic behavior of n!. We start with the following simply approach.

Taking the logarithm of it and applying the “integral trick” give us the following sharp bounds:

n ln(n)− n+ 1 ≤ ln(n!) ≤ n ln(n)− n+ 1 +
1

2
ln(n), (1.1)

where the upper bound requires the clever trick that we collect the extra triangle remainders above
the ln(n) curve to a rectangle that is parallel to y-axis.

Equation (1.1) immediately implies the following sharp bounds:(n
e

)n
e ≤ n! ≤

(n
e

)n
e
√
n (1.2)

Equation (1.2) also implies:
n! = Θ̃

((n
e

)n)
.

3

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Big_O_notation#Infinite_asymptotics

This result is already very close to the ground truth. Actually, we can show

n! = Θ
((n
e

)n√
n
)
,

by proving that the size of the slivers we dropped in the derivation of the upper bound in Equa-
tion (1.1) actually converges to some constant.

Xiao!Xiao: Prove Stirling’s formula:
n! ∼

√
2πn

(n
e

)n (1.3)

More exactly, it is
n! =

√
2πn

(n
e

)n(
1 +O

(1
n

))
. (1.4)

1.3 Bounds for Binomial Coefficients

Useful Equalities for Binomial Coefficients. We first presents a set of widely used equalities
regarding binomial coefficients. For all integers n, k, and t such that the following terms are
well-defined, we have: (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(1.5)(

n

k

)
=
n

k

(
n− 1

k − 1

)
(1.6)(

n

k

)(
n− k
t

)
=

(
n

t

)(
n− t
k

)
(1.7)

The Deathbed Formula. Even if someone asks you about this formula on your deathbed, you
should be able to spell it out without thinking.

nk

kk
≤
(
n

k

)
≤ nk

k!
≤ nk

kk
· ek (1.8)

Subsets Non-Overlapping. Another useful bound that appears again and again in cryptographic
applications is the following one:
Lemma 1.3.1: Subsets Non-Overlapping

Let k < n and t < (n− k). Then, we have(
n−k
t

)(
n
t

) ≤ (1− k

n

)t
and

(
n−k
t

)(
n
t

) ≤ (1− t

n

)k
(1.9)

4

Proof. The proof of Inequality (1.9) is rather simple:(
n−k
t

)(
n
t

) =
(n− k)!

t!(n− k − t)!
(n− t)!t!

n!
=

(n− k)!
(n− k − t)!

(n− t)!
n!

= (n− k)(n− k − 1) · · · (n− k − t+ 1) · 1

n(n− 1) · · · (n− t+ 1)

=
n− k
n
· n− k − 1

n− 1
· · · n− k − t+ 1

n− t+ 1
=

(
1− k

n

)
·
(
1− k

n− 1

)
· · ·
(
1− k

n− t+ 1

)
≤
(
1− k

n

)t
Note that Equation (1.7) essentially says that the role of k and t are interchangeable in the fraction
considered above. Thus, the above result together with Equation (1.7) gives us the second part of
Inequality (1.9). ■

We show the following simple corollary as an example of the application of Lemma 1.3.1.
Corollary 1.3.2: Subset-Guessing Game

Let n(λ) be a polynomial. Let k(λ) = δn(λ) where 0 < δ < 1 is a constant. Let t(λ) = ω(logλ)
and t(λ) < n(λ) − k(λ). For any computationally-binding commitment scheme Com, no PPT
adversary Adv can win the following “subset-guessing” game with non-negligible probability:

1. A challenger samples a random size-t subset r = {b1, . . . , bt} ⊆ [n], and commits to this
subset to Adv using Com;

2. Adv then outputs a size-k subset {p1, . . . , pk} ⊆ [n];

3. The Adv wins if {b1, . . . , bt} ⊂ [n] \ {p1, . . . , pk}.

Proof. Assume for contradiction that there is a computationally-hiding Com and a PPT Adv that
wins in the above game with non-negligible probability. We then show a PPT machine Advh that
breaks the computationally-hiding property of Com:

1. Advh samples independently two random size-t subsets of [n], denoted as B = {b1, . . . , bt}
and B′ = {b′1, . . . , b′t}. Advh sends B0 and B1 to the external challenger for the hiding game
of Com;

2. Advh then internally invokes Adv and relay messages between Adv and the external challenger;

3. After the interaction with the external challenger, Adv will output a set {p1, . . . , pk}. Advh
output 1 if and only if B ⊆ [n] \ {p1, . . . , pk}.

In the following, we argue that the following value is non-negligible, which means that Advh breaks
the hiding of Com: ∣∣Pr[Advh = 1 | Com(B)]− Pr

[
Advh = 1 | Com(B′)

]∣∣ .
First, note that Adv’s view in the above game is identical to that in the subset guessing game.
It then follows from our assumption that Pr[Advh = 1 | Com(B)] is non-negligible. Therefore, it
suffices to show that Pr[Advh = 1 | Com(B′)] is negligible. Recall that Alicedvh outputs 1 if and
only if B ⊆ [n] \ {p1, . . . , pk}. However, conditioned on Com(B′) (i.e. the external challenger

5

commits to B′), Adv has no information about B. Thus, {p1, . . . , pk} and B are independently
distributed. We then have:

Pr
[
Advh = 1 | Com(B′)

]
=

(
n−k
t

)(
n
t

) ≤ (1− k

n

)t
= (1− δ)t (1.10)

By our choice of parameter, 0 < δ < 1 is a constant and t = ω(λ). Therefore, Pr[Advh = 1 | Com(B′)] =
negl(λ). This finishes the proof of Corollary 1.3.2. ■

6

Chapter 2
A Minimalist Treatise on Analysis

2.1 Basic Concepts in Set Theory

Definition 2.1.1: Lower Bound, Supremum, Infimum

Let S be a subset S a partially ordered set (P,≤):

• A lower bound of S is an element a of P such that ∀x ∈ S [a ≤ x].

• A lower bound a of S is called an infimum (or greatest lower bound, or meet) of S, denoted
as infS, if for all lower bounds y of S in P , it holds that y ≤ a.

Similarly,

• An upper bound of S is an element a of P such that ∀x ∈ S [a ≥ x].

• An upper bound a of S is called an supremum (or least upper bound, or join) of S, denoted
as supS, if for all upper bounds y of S in P , it holds that y ≥ a.

In the following, we define limits for sets. It is worthing mentioning that there are more than
one way to define limits for sets, depending on the mathematical scope you want to study. The
definition we show here are the only one that is relevant for measure theory and probability (e.g.,
see Section 2.4.5). There are more general topological notions of set convergence that we did not
focus on.
Definition 2.1.2: Limit Superior, Limit Inferior, Set-Theoretic limit

Suppose that (An)n is a sequence of sets index by n ∈ N (that is, this is a countable sequence of
sets). Define the following

• Limit superior:

lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
k=n

Ak.

• Limit inferior:
lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak.

If
lim inf
n→∞

An = lim sup
n→∞

An = A,

then, we say that the set-theoretic limit of the sequence(An)n exists and is equal to A, denoted as

lim
n→∞

An = A.

7

Xiao!Xiao: Need to define lim inf and lim sup. They will be particularly important when we talk
about measure theory, e.g., Section 2.4.5.

2.2 On Mathematical Spaces

2.2.1 Three Major Spaces
Modern mathematics is based on ’abstract spaces,’ which are sets of elements that satisfy a carefully
selected set of axioms. The nature of the elements is deliberately left unspecified to maintain
generality. By choosing different sets of axioms, we obtain different types of abstract spaces.
The theory then consists of logical consequences that result from these axioms and are derived as
theorems once and for all.

The motivation behind this abstract approach is best explained in the following quotation from
[Kre89, Chapter 1]:

Mathematicians observed that problems from different fields often enjoy related features
and properties. This fact was used for an effective unifying approach towards such
problems, the unification being obtained by the omission of unessential details. Hence
the advantage of such an abstract approach is that it concentrates on the essential
facts, so that these facts become clearly visible since the investigator’s attention is not
disturbed by unimportant details. In this respect the abstract method is the simplest and
most economical method for treating mathematical systems.
Since any such abstract system will, in general, have various concrete realizations (con-
crete models), we see that the abstract method is quite versatile in its application to
concrete situations. It helps to free the problem from isolation and creates relations and
transitions between fields which have at first no contact with one another.

The most fundamental spaces we are particularly interested in are (1) Topological Spaces (2) Mea-
sure Space, and (3) Metric Space. Out of these three concepts, a topological space is considered the
most fundamental, and both metric spaces and measure spaces are (somewhat) built on top of topo-
logical spaces. But a metric space and measure space are rather incomparable. (See Section 2.2.2,
Section 2.2.3, and Section 2.2.4 for a three-way comparison.)

In the following, we first provide a high-level discussion regarding them and then dive into more
details in Section 2.3, Section 2.4, and Section 2.5, respectively.

2.2.1.1 Topological Space

A topological space is arguably the type of space with minimal “structures” that are of interest to
non-mathematicians. By abstracting the notion of open sets, topological spaces allow mathemati-
cians to study continuity, convergence1, connectedness, and other fundamental concepts in a very
general and flexible way.

We will be particularly interested in the following concepts in a topological space:

• open/close sets, neighborhood,
1The notion of convergence in a topological space is quite different from our intuitive understanding of the concept.

Our naive impression of convergence is more akin to the concept in a metric space where ’distance’ is defined. In
contrast, topological spaces provide a framework for discussing the convergence of sequences, nets, and filters.

8

• limit points2, dense subset, separable spaces,

• compactness, continuitiy.

Topological spaces are important for several reasons. Just to name some:

• Generalizing Geometric Concepts: Topological spaces allow the generalization of many geo-
metric and analytic concepts, such as continuity and convergence, without requiring a specific
structure like a metric. This makes topology applicable to a wide range of mathematical dis-
ciplines, including analysis, geometry, and algebra.

• Algebraic Topology: Topological spaces are the primary objects of study in algebraic topology,
where they are used to investigate properties that are invariant under continuous deforma-
tions. Tools such as homotopy, homology, and cohomology theories are developed to study
topological spaces and their mappings.

• Manifolds: Many spaces of interest in mathematics, particularly in differential geometry and
theoretical physics, are manifolds, which are topological spaces that locally resemble Euclidean
space. The study of manifolds requires a thorough understanding of topological concepts.

2.2.1.2 Measure Space
Xiao!Xiao: to do

We will be particularly interested in the following concepts in a topological space:

• σ-algebra, Borel sets, Borel-Cantelli Lemma

• Carathéodory’s extension theorem

• Lebesgue Measure, Lebesgue integral

• Measure-theoretic probability theory and stochastic process

• Lp space, ℓp space, and Hölder’s Inequality

2.2.1.3 Metric Space
Xiao!Xiao: to do

We will be particularly interested in the following concepts in a topological space:

• Limit and convergence. Cauchy Sequence. Completeness

• Normed Space. Banach Space.

• Inner product space. Hilbert Space.

2.2.2 Metric Space vs Topological Space
A metric space is always associated with a topological space—with the topology induced by its
metric. See Theorem 2.5.2.

2Such points are also known as accumulation points or cluster points.

9

2.2.3 Measure Space vs Topological Space
A measure space and a topological space serve for different purpose, and one is not necessarily the
other—A measure space is not always a topological space because a measure space is defined by a
σ-algebra and a measure, without any inherent notion of open sets or topology. However, they can
be related under certain conditions. Consider the following two examples:

1. Topological Space with a Borel Measure: If you have a topological space (X, T), you can con-
struct a measure space by considering the Borel σ-algebra B(X), which is generated by the
open sets of the topology T . A measure µ defined on this Borel σ-algebra (X,B(X), µ) makes
it a measure space.
Example: The Lebesgue measure on R with the standard topology.

2. Measure Space with an Induced Topology: Conversely, if you start with a measure space
(X,M, µ), it doesn’t inherently have a topology. However, certain sets in M can induce
a topology. For example, if you consider a metric space with a metric that generates a
σ-algebra, you can define open sets based on the metric, thereby inducing a topology.
However, this is not a general rule and depends on additional structure being imposed on the
measure space.

2.2.4 Measure Space vs Metric Space
These two concepts of spaces are incomparable:

• Measure Space that is Not a Metric Space: Consider the measure space (R,B(R), µ), where
B(R) is the Borel σ-algebra on R and µ is the Lebesgue measure. Without defining a metric,
this structure does not inherently include any notion of distance between points in R.

• Metric Space that is Not a Measure Space: Consider the set of rational numbers Q with the
standard metric d(x, y) = |x−y|. This forms a metric space, but without a specified measure
and σ-algebra, it is not a measure space.

That been said, it is worth noting that in some cases, a measure can be defined using a metric. For
example, the Lebesgue measure on R can be seen as related to the standard metric (but they are
still distinct structures).

A measure space and a metric space are distinct mathematical structures with different focuses
and applications. A measure space is not inherently a metric space, and vice versa. To better
understand this, imagine a map (metric space) with distances between cities (points). Now, you
want to measure the area (size) of specific regions on the map (measure space). You might use the
distances (metric) to define the shapes of these regions, but the measure itself is a separate concept
focusing on the “size.”

2.3 Basic Concepts in Topology
Topology is nowadays one of the most widely used mathematical languages. It is important later
when we want to discuss advanced topics in probability theory and quantum computing.

10

Definition 2.3.1: Topology, Open Sets, and Neighborhoods

Let X be a set and let τ be a family of subsets of X. Then τ is called a topology on X if:

1. ∅ ∈ τ and X ∈ τ ;

2. Any union of elements of τ is an element of τ ;

3. Any intersection of finitely many elements of τ is an element of τ .

If τ is a topology on X, then the pair (X, τ) is called a topological space. The members of τ are
called open sets in X. A subset of X is said to be closed if its complement is open.

For a point x ∈ X, Nx is a neighborhood if:

1. x ∈ Nx;

2. Nx is open (w.r.t. the topological space (X, τ)).

Here are some remarks regarding the definition:

• A subset of X may be open, closed, both (a clopen set), or neither. The empty set and X
itself are always both closed and open.

• Some mathematicians denote neighborhood for x as a set Nx that contains an open set of X
(i.e., Nx itself does not need to be open). This version does not make any effective difference
for most discussions in topology.

Xiao!Xiao:

• Interior points, exterior points, boundary points, isolated point, limit points, and closure.

• Separation Axioms T0 to T4.
Definition 2.3.2: Topology Generated by Subbasis

For a subset S of the power set of X, the topology generated by S (denoted by τ(X)) is defined
by the intersection of all the elements (which are sets) in the following family of sets:

{τ | τ is a topology on X containing S}.

S is called the subbasis of a topology τ on X if τ = τ(S).a

aSome authors also require that S covers X. See this wiki page.

We remark that any intersection of many3 topologies on X is also a topology on X. Thus,
Definition 2.3.2 is well-defined. Also, it is clearly that coarsest topology containing S. That is why
some authors directly define the topology induced by S as the coarsest topology containing S.

The following lemma give a nice characterization of the induced topology:
3Note that there is no requirement on finiteness or countability.

11

https://en.wikipedia.org/wiki/Base_(topology)

Lemma 2.3.3:

Let τ(S) denote the topology on X generated by subbasis S. Then,

τ(S) = {U ⊆ X | U = ∪V ∈FV where F ⊆ S′},

where S′ := {s1 ∩ . . . ∩ sk | s1, . . . , sk ∈ S, k ∈ N} ∪ {X}.

The set S′ defined in Lemma 2.3.3 is the collection of all the sets that can be obtained by the
intersection of finitely many elements in S (and ∪{X}).4 Actually, Lemma 2.3.3 is just obtained
by following the definition of topology—it simply takes the collection of arbitrary unions of finite
intersections of elements of S.

2.3.1 Basis and Local Basis

Definition 2.3.4: Basis and Local Basis

B is a basis for (X, τ) iff

1. B ⊆ τ (i.e., all members of B are open);

2. every open set (i.e., elements in τ) can be expressed as a union of some elements in B.

B is a local base for (X, τ) at a point x ∈ X iff

1. ∀V ∈ B [x ∈ V ∧ V ∈ τ];

2. for any U ∈ τ s.t. x ∈ U , there exists V ∈ B such that x ∈ V and V ⊆ U .

Xiao!Xiao: Say that this definition is different from the one in wikipedia or some textbooks [Mun84].
But they should be(?) equivalent.
Lemma 2.3.5:

Let (X, τ) be a topological space and B ⊆ P(X). For any x ∈ X, define Bx = {U ∈ B | x ∈ U}.
Then,

B is a basis of X ⇔ ∀x ∈ X, Bx is a local basis of (X, τ) at x.

2.3.2 Continuity and Compactness
The concept of continuity of functions we studied in calculus (i.e., real or complex metric space)
can be generalized to any topology space.
Definition 2.3.6: Continuity

Let (X, τX) and (Y, τY) be topological spaces. Let f : X → Y be a map. We say that f is
continuous at a point x ∈ X if for any V ∈ τY for which f(x) ∈ V , there exits U ∈ τX such that
x ∈ U .
We say that f is continuous if it is continuous at every point in X. It can be shown that f is
continuous if and only if ∀V ∈ τY [f−1(V) ∈ τX].

4Note that there are debates if 0 ∈ N. Here, we choose to set 0 /∈ N.

12

https://en.wikipedia.org/wiki/Base_(topology)#Definition_and_basic_properties

Definition 2.3.7: Compactness

Let (X, τX) be a topological space and K ⊆ X. K is compact in (X, τX) if for every collection C of
open subsets of X such that K ⊆ ∪U∈CU , there is a finite subset F ⊆ C such that K ⊆ ∪V ∈FV .
We say that (X, τX) is compact space if X is compact in (X, τX).

Lemma 2.3.8: Compactness is Preserved by Continuous Map

Let f be a continuous map from (X, τX) to (Y, τY). If K is compact in (X, τX), then f(K) is
compact in (Y, τY).

2.3.3 Dense Subsets
Xiao!Xiao: need to talk about the concept of Dense Subset. It is used in Solovay-Kitaev Theorem

Theorem 4.10.4.
Xiao!Xiao: Talk about separable spaces—a topological space is called separable if it contains a

countable, dense subset.
See also [Kre89, Chapter 1.3] where a definition of separable spaces (and dense subsets) is given

specifically to metric spaces.

2.4 Basic Concepts in Measure Theory
Xiao!Xiao: List of Resource

• The best resource I found that reviews the basic concepts in Measure Theory is this sequence
of video lectures.

• One important measure theoretic notion for quantum computing is Haar measure. The work
of [Mel24] serves as a good starting point. However, it is mainly about the properties of Haar
measure and how to use Haar measure as a tool; it lacks a definitional treatment of Haar
measure itself.

2.4.1 σ-Algebra
We first define the most basic concept in Measure Theory—σ-algebra, which is a special case of an
algebra.
Definition 2.4.1: Sigma Algebra

Let X be a set and A ⊆ P(X). A is a σ-algebra on X if

1. X ∈ A;

2. (Closed under Complementation.) ∀A ∈ A [Ac ∈ A], where Ac := X \A; and

3. (Closed under Countable Unions.)a Let {Ai}i∈N be a countable sequence such that
Ai ∈ A for all i ∈ N, then ∪∞i=1Ai ∈ A.

aAssuming that Conditions 1 and 2 hold, it follows from De Morgan’s laws that this condition is equivalent to
A being closed under countable intersections.

13

https://www.youtube.com/playlist?list=PLLyj1Zd4UWrO6VtBSiQLsNlo9QBm30nxC
https://www.youtube.com/playlist?list=PLLyj1Zd4UWrO6VtBSiQLsNlo9QBm30nxC
https://en.wikipedia.org/wiki/Field_of_sets

Analogous to the case of topological spaces (see Footnote 3), it is easy to see that if {Aj}j∈J is
a family of σ-algebras on X, then ∩j∈JAj is also a σ-algebra on X. Thus, we have the following
analog of Definition 2.3.2. Unfortunately, we do not have an analog of Lemma 2.3.3 that gives clean
characterization of the A(S) defined in Definition 2.4.2.
Definition 2.4.2: σ-Algebra Generated by a Set

For any S ⊆ P , there exists a smallest σ-algebra A(S) containing S. We call A(S) the σ-algebra
generated by S. A(S) is defined by the intersection of all the elements (which are sets) in the
following family of sets:

{A | A is a σ-algebra on X containing S}.

Remark 2.4.1. When considering Definition 2.4.2, you might immediately wonder: Does the
intersection of σ-algebras form a σ-algebra? This question becomes even more intriguing when
considering the intersection of uncountably many σ-algebras.

Fortunately, the answer is YES. We summarize this result in Lemma 2.4.3. For a related
discussion, see this video.

A related question is whether the union of σ-algebras is still a σ-algebra. Unlike the case of
intersection, the answer here is NO. It is possible to construct a counterexample with the union of
just two σ-algebras (do this as an exercise!).

Lemma 2.4.3: Intersection of σ-Algebras

The intersection of any collection of σ-algebras, even if the collection is uncountable, is itself a
σ-algebra.

2.4.2 Borel σ-Algebra
A particularly important type of σ-algebras is Borel σ-Algebras.
Definition 2.4.4: Borel σ-Algebra, Borel Sets, and Borel Measurable

Let (X, τ) be a topological space. The Borel σ-algebra B[X] of X is defined to be the σ-algebra
generated by the collection τ of open subsets of X (i.e., B[X] = A(τ)). Elements (which are sets)
of B[X] are called Borel sets. They are said to be Borel measurable.

This wiki page defines Borel algebra differently. Our Definition 2.4.4 is in line with the one
used by Tao [Tao11, Definition 1.4.16]. These two versions are equivalent—both of them defines
the “minimal” σ-algebra that contains all the open sets of a topological spaces. One of the most
famous examples is the Borel algebra (R,B(R)) over the real line, which plays a super important
for Lebesgue’s integration theory.
Definition 2.4.5: Borel Measurable Map

Let (X, τX) and (Y, τY) be topological spaces. Let B[X] and B[Y] be their corresponding Borel
σ-algebras. A function f : X → Y is Borel measurable if it is (B[X],B[Y])-measurable (see
Definition 2.4.8).

14

https://www.youtube.com/watch?v=lsHr3Y9-PCA&list=PLLyj1Zd4UWrO6VtBSiQLsNlo9QBm30nxC&index=3
https://en.wikipedia.org/wiki/Borel_set

Lemma 2.4.6: Borel Measurability of Continuous Maps

Let (X, τX) and (Y, τY) be topological spaces. If f : X → Y is continuous (as per Definition 2.3.6),
then f is Borel measurable (as per Definition 2.4.5).

2.4.3 Measure and Measure Spaces
Starting with a σ-algebra, we can define a measurable space. This space, as its name suggests, will
allows us to define measures on it (hence, “measurable space” rather than “measure space”).
Definition 2.4.7: Measurable Space and Measurable Sets

A measurable space (X,MX) consists of a set X and a σ-algebraMX on X. The elements (which
are sets) contained in MX are called measurable sets.

Analogous to the concept of continuous map (Definition 2.3.6) w.r.t. topological spaces, we can
define measurable map for measurable space.
Definition 2.4.8: Measurable Map

Given two measurable spaces (X,MX) and (Y,MY), a map f : X → Y is a (MX ,MY)-
measurable map if for all B ∈MY , it holds that f−1(B) ∈MX .

Starting with a measurable space, we now define a measure on it, making it a measure space!
Definition 2.4.9: (Countably Additive) Measure and Measure Spaces

Let (X,B) be a measurable space. An (unsigned) countably additive measure µ on B, or measure
for short, is a map µ : B → [0,+∞] that obeys the following axioms:

1. (σ-Additivity.) Whenever E1, E2, . . . ∈ B are a countable sequence of disjoint measurable
sets, then

µ(
∞⋃
i=1

Ei) =
∞∑
i=1

µ(Ei).

2. (Non-Triviality.) µ(∅) = 0. (Assuming Condition 1, Condition 2 is equivalent to the
following requirement: ∃E ∈ B [µ(E) <∞].

A triplet (X,B, µ), where (X,B) is a measurable space and µ : B → [0,+∞] is a countably
additive measure, is known as a measure space.

Xiao!Xiao:
• Actually, at this moment, we are ready to establish Lebsegue’s integration theory. However,

this theory (albeit very useful for numerous applications) is not that important for theoretical
computer science. Thus, we choose to skip it.

• Completion and complete measure space.

• Constructing outer measure via covering.

• Lebesgue outer measure (and probably Hausdorff outer measure).

• Regular measure.

15

2.4.4 Outer Measure and Carathéodory’s extension theorem
Xiao!Xiao: Outer measure and Carathéodory’s extension theorem ([Tao11, Section 1.7.1] is a great

reference for this topic). Here are two interesting applications of Carathéodory’s extension theorem:

• Used to define Lebesgue measure on the Borel σ-algebra (R,B(R, λ)), and show its uniqueness.
(i.e., extending λ

(
(a, b]

)
= b− a.)

• Define product measure: given two measure spaces (X1,A1, µ1) and (X2,A2, µ2), first con-
struct a new measurable space

(
X1 × X2, σ(A1 × A2)

)
, where σ(A1 × A2) is the σ-algebra

generated by the Cartesian product A1 × A2. Then, the corresponding measure is obtained
by applying Carathéodory’s extension to µ(A1 × A2) := µ1(A1) · µ2(A2). (In general, this
measure is not unique. But it is unique if both µ1 and µ2 are finite.)

Xiao!Xiao: define outer measure and Carathéodory measurebility
Theorem 2.4.10: Carathéodory’s Extension Theorem

Let µ∗ : X → [0,+∞] be an outer measure on a set X, let B be the collection of all subsets of X
that are Carathéodory measurable w.r.t. µ∗, and let µ : B → [0,+∞] be the restriction of µ∗ to B
(thus µ(E) = µ∗(E) whenever E ∈ B). Then, (X,B, µ) is a measure space (i.e., B is a σ-algebra,
and µ is a measure).

2.4.5 Borel-Cantelli Lemma
This is an important lemma used (sometimes implicitly) in several lower bounds in cryptography
(e.g., [IR89, CFM21]). In the following, we present the lemma in its most general form (i.e., w.r.t.
any measure space), although cryptographic or standard TCS applications of it mainly cares about
the special case of probability measure.
Lemma 2.4.11: Borel-Cantelli Lemma

Let (X,F , µ) be a measure space, and let {En}∞n=1 be a sequence of F-measurable sets (i.e.,
En ∈ F for all n) such that

∑∞
n=1 µ(En) <∞. Then,

µ
(

lim sup
n→∞

En
)
= 0,

where recall from Definition 2.1.2 that lim supn→∞En =
⋂∞
n=1

⋃∞
k=nEk.

How to interpret Lemma 2.4.11:

• In words, the equation µ
(

lim supn→∞En
)
= 0 actually means the following: almost every

x ∈ X is contained in at most finitely many of the En (i.e. {n ∈ N : x ∈ En} is finite for
almost every x ∈ X).

• When (X,F , µ) is a probability measure, the set (which could be called an event) lim supEn
is sometimes denoted {En i.o.}, where “i.o.” stands for “infinitely often.” People usually
describe the event lim supEn as “(En)n happens infinitely often.” This is an awkward and
misleading terminology—What happens infinitely often is not really the sets En’s, but the
elements in the set lim supEn. To see that, let us consider a point ω ∈ lim supEn. First,
recall from Definition 2.1.2 that lim supEn =

⋂∞
n=1

⋃∞
k=nEk; Let us now explain the meaning

of
⋃

and
⋂

:

16

– First, note that ω ∈
⋃∞
n=1En for all n = 1, 2, 3...

– Then, ω ∈
⋂∞
n=1

⋃∞
k=nEk means that ω is contained in infinitely many set En’s (i.e.,

ω ∈ En for infinitely many n ∈ N.)

Therefore, lim supEn actually denotes a set of ω’s that “happen infinitely” (i.e., contained in
infinitely many set En’s). Formally,

lim sup
n→∞

En = {ω | ω ∈ X ∧ ω is contained in infinitely many En′s}.

Thus, what happens infinitely often is not the set En, but the elements in the set lim supEn.
Even more accurately, the elements in the set lim supEn do not really “happen infinitely
often”; rather, they are contained in infinitely many En’s!

• When (X,F , µ) is a probability measure, the theorem asserts that if the sum of the probabil-
ities of all the events in En is finite, then the probability of those events happening infinitely
often (see the above bullet for an accurate explanation) is zero.
This is summarized as the following Corollary 2.4.12. Typically, this is the most widely used
version of Borel-Cantelli lemma in Cryptography.

Corollary 2.4.12: Borel-Cantelli for Probability Spaces

Suppose that {En}n∈N is a sequence of events in a probability space. If∑
n∈N

Pr[En] <∞,

then the probability that infinitely many of them occur is 0, or formally,

Pr
[
lim sup
n→∞

En

]
= Pr

[∞⋂
n=1

∞⋃
k=n

Ek

]
= 0.

In other words, with probability 1, only a finite number of the events occur.

A Coin-Flipping Example. To better understand the Borel-Cantelli Lemma, let us consider an
example of coin-flipping. In particular, consider an infinite sequence of coin flipping:

• Let An be the event that the n-th toss is heads.

• Let P (An) = p for a (biased) coin that flips to head with probability p.

Note that lim supn→∞An in this context means the event that “heads appear infinitely often.” This
can be seen by a careful analyze of the definition lim supn→∞An :=

⋂∞
n=1

⋃∞
k=nAk:

• Understanding
⋃∞
k=nAk: This union represents the event that at least one of the coin tosses

n, n+ 1, n+ 2, . . . results in heads. In other words, starting from the n-th toss onward, there
is at least one heads.

• Understanding
⋂∞
n=1

⋃∞
k=nAk: This intersection means that for every n, there is at least

one heads among the tosses n, n+1, n+2, No matter how far out you go in the sequence
of tosses, you will always find a heads eventually.

17

In summary, for any positive integer n, there must be some k ≥ n such that the k-th toss is heads.
This means that heads keep appearing no matter how far you go along the sequence of tosses.

First, consider the case P (An) = p = 1/2. Let us sum the probabilities:
∞∑
n=1

P (An) =

∞∑
n=1

1

2
=∞.

Since this sum is infinite, the Borel-Cantelli lemma does not tell us anything in this case.
Next, let us consider the case P (An) = 1

n2 . Let us sum the probabilities:

∞∑
n=1

P (An) =
∞∑
n=1

1

n2
.

This is a convergent series (specifically, it converges to π2

6). It then follows from the Borel-Cantelli
lemma that

Pr
[
lim sup
n→∞

An

]
= 0.

According to our earlier interpretation of the event “lim supn→∞An”, it means that the probability
that “heads appear infinitely often” is 0!

2.4.6 The Second Borel-Cantelli Lemma
We next discuss about the so-called “second Borel-Cantelli lemma.” This lemma is also known as
the converse or divergence version of Borel-Cantelli lemma. However, there is a important caveat:

• The Borel–Cantelli lemma holds for general measure space (i.e., Lemma 2.4.11). However,
the second Borel–Cantelli lemma applies specifically to probability measures—It is a result
within the realm of probability theory and is used to make statements about the behavior of
sequences of events under probability measures.

Lemma 2.4.13: The Second Borel-Cantelli Lemma

Let (Ω,F , P) be a probability space and let {En} be a sequence of events in F . If the events
(En)

∞
n=1 are pairwise independent and

∑∞
n=1 P (En) =∞, then it holds that

Pr
[
lim sup
n→∞

En

]
= 1.

For example, imagine flipping a biased coin with a probability of 0.00001 for heads (H) for
infinitely many times. Let En denote the event that the n-th flipping gives head. Then, it holds
that

∞∑
n=1

Pr[En] =
∞∑
n=1

0.00001 =∞.

It then follows from Lemma 2.4.13 that

Pr
[
lim sup
n→∞

En

]
= 1.

In our context, the event lim supn→∞En means that there are infinitely many heads in the infinite
sequence of coin flip results. Thus, the above result means that: despite that the individual

18

probability of heads is extremely small (i.e., p = 0.00001), if we toss the coin for infinitely many
times, it is almost surely (i.e., with probability 1) that we will see heads infinitely often.

2.4.7 Lp Space, ℓp Space, and Hölder’s Inequality

2.4.7.1 Lp Space

The Lebesgue integral on any measure space gives rise to a natural norm called the Lp norm
(or p-norm). A measure space, when perceived with this natural Lp-norm together, forms an
important normed measure space. We call it the Lp space (see for Definition 2.4.14 the formal
definition). These spaces are fundamental in various areas of mathematical analysis, including
functional analysis, harmonic analysis, and partial differential equations.
Definition 2.4.14: Lp Space

Fix a p ∈ [1,∞). Given a measure space (X,M,µ), the Lp space Lp(X,M,µ), or simply Lp(X)
when the measure and σ-algebra are understood, consists of all measurable functions f : X → R
(or C) such that the p-th power of the absolute value of f is (Legesgue) integrable. Formally, the
Lp space is defined as:

Lp(X) =

{
f : X → R

∣∣∣∣ ∫
X
|f(x)|p dµ(x) <∞

}
The norm in an Lp space, called the p-norm, is defined by:

‖f‖p =
(∫

X
|f(x)|p dµ(x)

) 1
p

Remark 2.4.2 (On the Range of p). In the above, we only consider p ∈ [1,∞). It is worth noting
that Definition 2.4.14 can be extended to p ∈ [0,∞], with the following caveats:

• To define L∞, one needs to talk about the notions such as essentially bounded functions,
essential supremum, and almost everywhere less than or equal to. I don’t want to include
that as they are not so useful form computer scientists.

• The definition can be extended to all 0 < p ≤ ∞ (rather than just 1 ≤ p ≤ ∞), but it is only
when 1 ≤ p ≤ ∞ that ‖ · ‖p is guaranteed to be a norm (although ‖ · ‖p is a quasi-seminorm
for all 0 < p ≤ ∞).

• To define L0, see this wikipedia link.

2.4.7.2 ℓp Space

The ℓp space is essentially the “discrete” version of the Lp space defined in Definition 2.4.14. In the
former, Lebesgue integral simply degenerates to (potentially infinite) summation, and thus things
become easier to understand for people who are not good at math. We now provide the formal
definition.

19

https://en.wikipedia.org/wiki/Lp_space#L0,_the_space_of_measurable_functions

Definition 2.4.15: ℓp Space

For 1 ≤ p < ∞, the space ℓp consists of all sequences of real or complex numbers (xn)n∈N such
that the series of the p-th power of the absolute values is convergent. Formally:

ℓp =

{
(xn)n∈N

∣∣∣∣ ∞∑
n=1

|xn|p <∞

}
For p =∞, the space ℓ∞ consists of all bounded sequences of real or complex numbers. Formally:

ℓ∞ =

{
(xn)n∈N

∣∣∣∣ sup
n∈N
|xn| <∞

}
For p ∈ [1,∞), the norm in an ℓp space is defined as: ‖x‖p = (

∑∞
n=1 |xn|p)

1
p .

For ℓ∞, the norm is the supremum norm: ‖x‖∞ = supn∈N |xn|

2.4.7.3 Hölder’s Inequality

Hölder’s inequality is a fundamental inequality in measure theory and functional analysis. It gen-
eralizes the Cauchy-Schwarz inequality and is crucial in the study of Lp spaces. Hölder’s inequality
provides a bound on the integral (or sum) of the product of two functions in terms of the Lp norms
of the functions.
Theorem 2.4.16: Hölder’s Inequality

Let (X,M,µ) be a measure space, and let f and g be measurable real- or complex-valued functions
onX. Let p and q be real numbers such that 1 ≤ p, q ≤ ∞ and 1

p+
1
q = 1. Then, Hölder’s inequality

states that: ∫
X
|f(x)g(x)| dµ(x) ≤

(∫
X
|f(x)|p dµ(x)

) 1
p
(∫

X
|g(x)|q dµ(x)

) 1
q

.

Or equivalently, using the notation from Definition 2.4.14, it is

‖fg‖1 ≤ ‖f‖p‖g‖p.

Some remarks:

• The integral in is Lebesgue integral, which can be defined for arbitrary measure space.

• When p = q = 2, Theorem 2.4.16 is Cauchy-Schwarz inequality.

In the “discrete” ℓp space (see Definition 2.4.15), Hölder’s inequality has the following format.
Theorem 2.4.17: Hölder’s Inequality for ℓp Space

Let x = (xn) and y = (yn) be sequences of real or complex numbers. Let p and q be real numbers
such that 1 ≤ p, q ≤ ∞ and 1

p +
1
q = 1. Then, Hölder’s inequality states that:

∞∑
n=1

|xnyn| ≤

(∞∑
n=1

|xn|p
) 1

p
(∞∑
n=1

|yn|q
) 1

q

.

20

2.5 Basics Concepts in Metric Space and Functional Analysis

Definition 2.5.1: Metric Space

A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance function on
X), that is, a function d : X ×X → R such that for all x, y, z ∈ X, it holds that

1. d(x, x) = 0,

2. (Positivity.) If x 6= y, then d(x, y) > 0.

3. (Symmetry.) d(x, y) = d(y, x).

4. (Triangle Inequality.) d(x, y) ≤ d(x, z) + d(z, y).

Theorem 2.5.2: Metric-Induced Topological Space

Every metric space is a topological space with the open sets (in the topological space) being the
open balls (in the metric space).

Proof of Theorem 2.5.2. Given a metric space (X, d), we can define a topology on X using the
metric. The collection of open sets in this topology is defined as follows:

A subset U ⊆ X is called open if, for every point x ∈ U , there exists an ε > 0 such that the
open ball B(x, ε) ⊆ U , where the open ball B(x, ε) is defined as:

B(x, ε) = {y ∈ X | d(x, y) < ε}.

It is not hard to show that such a definition of open sets satisfies the requirements of being a
topological space.

■

2.5.1 Limit, Cauchy Sequence, and Completeness

Definition 2.5.3: Convergence of a sequence, limit

A sequence (xn) in a metric space X = (X, d) is said to converge (or to be convergent) if there is
an x ∈ X such that

lim
n→∞

d(xn, x) = 0.

The x is called the limit of (xn) and we write limn→∞ xn = x, or simply xn → x.
If (xn) is not convergent, it is said to be divergent.

Some remarks regarding Definition 2.5.3 follow:
• Note that the limit point x must be in the space X. That is, the sequence cannot convert to

some point out of the concerned space.

• Metric space is essentially the “minimal” space where we can talk about limit and convergence.
This is because the notion of limit/convergence we first encountered in a real analysis (or
calculus) course is about real numbers5. A metric space has a metric d defined, which maps

5More accurately, it requires the notion of “distance,” which is naturally measured by real numbers.

21

(pairs of) elements to the real numbers (see Definition 2.5.1). This allows use to exercise the
idea of limit/convergence.

Definition 2.5.4: Cauchy Sequence, Completeness

A sequence (xn) in a metric space (X, d) is said to be Cauchy (or fundamental) if for every ε > 0,
there is an N = N(ε) such that for all m,n > N , it holds that d(xm, xn) < ε.
The space (X, d) is said to be complete if every Cauchy sequence in X converges (that is, has a
limit which is an element of X).

Xiao!Xiao:

• Define metric space, open/close sets, convergence, Cauchy sequence, and completeness.
One of the most important properties of Cauchy sequences:

Lemma 2.5.5:

Let (X, d) be a metric space and {xn}n∈N be a Cauchy sequence. If a subsequence {xnk
}k∈N

converges to some x ∈ X, then so does {xn}n∈N.

• Normed space and Banach Space.

– Normed space is obtained by defining a norm on a vector space (as per Definition 3.5.2).
Note that a vector space itself may not be a metric space. But once a norm is defined
on top of it, the norm induces a natural metric, making it a metric space. Also see the
first few paragraphs in [Kre89, Chapter 2].

– The following quotation from [Kre89, Chapter 2.2] is very important
... in many cases a vector space X may at the same time be a metric space
because a metric d is defined on X. However, if there is no relation between
the algebraic structure and the metric, we cannot expect a useful and applicable
theory that combines algebraic and metric concepts. To guarantee such a relation
between “algebraic” and “geometric” properties of X, we define on X a metric
d in a special way as follows. We first introduce an auxiliary concept, the norm
(definition below), which uses the algebraic operations of vector space. Then we
employ the norm to obtain a metric d that is of the desired kind. This idea leads
to the concept of a normed space. It turns out that normed spaces are special
enough to provide a basis for a rich and interesting theory, but general enough to
include many concrete models of practical importance. In fact, a large number
of metric spaces in analysis can be regarded as normed spaces, so that a normed
space is probably the most important kind of space in functional analysis, at
least from the viewpoint of present-day applications.

– Banach Space is a complete normed space (complete in the metric defined by the norm).

One of the most important Banach Spaces: ℓp space.

• Inner-product space and Hilbert space. Directly used in quantum computing.

– Metric spaces allow us to talk about distance.
– Normed spaces allow us to talk about distance and length.

22

– Inner product spaces allow us to talk bout distance, length, and angle.

Also see Section 2.5.2.

• Operator norm, bounded operator, and its relation to continuity. The following lemma is
especially important

Lemma 2.5.6: Continuity of Bounded Operators

Let (X, ‖·‖X) and (Y, ‖·‖Y) be two normed spaces. Let T : X → Y is a linear operator.
Then, the following claims are equivalent:

– T is continuous (at all points);

– T is continuous at a single point;

– T is bounded.

• talk about the concept of “compactness” in metric space (which should be viewed as a special
case of Definition 2.3.7).

2.5.2 Motivation for Inner Product Space (and Hilbert Space)
(The following material is taken almost verbatim from the beginning of [Kre89, Chapter 3].)

In a normed space we can add vectors and multiply vectors by scalars, just as in elementary
vector algebra. Furthermore, the norm on such a space generalizes the elementary concept of the
length of a vector. However, what is still missing in a general normed space, and what we would
like to have if possible, is an analogue of the familiar dot product

a · b := a1b1 + a2b2 + a3b3

and resulting formulas, notably the notion of “absolute value” (or “squared modulus”)

|a| =
√
a · a

and the condition for orthogonality (perpendicularity)

a · b = 0

which are important tools in many applications. Hence the question arises whether the dot product
and orthogonality can be generalized to arbitrary vector spaces. In fact, this can be done and leads
to inner product spaces and complete inner product spaces, called Hilbert spaces.

Inner product spaces are special normed spaces. Historically they are older than general normed
spaces. Their theory is richer and retains many features of Euclidean space, a central concept
being orthogonality. In fact, inner product spaces are probably the most natural generalization
of Euclidean space, and the reader should note the great harmony and beauty of the concepts
and proofs in this field. The whole theory was initiated by the work of D. Hilbert (1912) on
integral equations. The currently used geometrical notation and terminology is analogous to that
of Euclidean geometry and was coined by E. Schmidt (1908), who followed a suggestion of G.
Kowalewski (as he mentioned on page 56 of his paper). These spaces have been, up to now, the
most useful spaces in practical applications of functional analysis.

23

At a high level, an inner product space X is a vector space with an inner product (x, y) defined
on it. The latter generalizes the dot product of vectors in three dimensional space and is used to
define

1. a norm ‖ · ‖ by ‖x‖ =
√
〈x, x〉,

2. orthogonality by 〈x, y〉 = 0.

A Hilbert space H is a complete inner product space. The theory of inner product and Hilbert
spaces is richer than that of general normed and Banach spaces. Distinguishing features are:

1. representations of H as a direct sum of a closed subspace and its orthogonal complement (see
[Kre89, Theorem 3.3-4]),

2. orthonormal sets and sequences and corresponding representations of elements of H (see
[Kre89, Sections 3.4 and 3.5]),

3. the Riesz representation (see [Kre89, Theorem 3.8-1]) of bounded linear functionals by inner
products,

4. the Hilbert-adjoint operator T ∗ of a bounded linear operator T (see [Kre89, Definition 3.9-1]).

Orthonormal sets and sequences are truly interesting only if they are total (see [Kre89, Section
3.6]). Hilbert-adjoint operators can be used to define classes of operators (self-adjoint, unitary,
normal; see [Kre89, Section 3.10]) which are of great importance in applications.

24

Chapter 3
Algebra from a Modern Point of View

3.1 Pre-Group Concepts

Definition 3.1.1: Magma

A magma (also called “groupoid”) is a set M equipped with a binary operation “+” satisfying
the following property:

1. Closure. M is closed under “+”.

Definition 3.1.2: Semigroup

A semigroup is a set S equipped with a binary operation “+” satisfying the following properties:

1. Closure. S is closed under “+”.

2. Associativity. For all a, b, c ∈ S, (a+ b) + c = a+ (b+ c).

Definition 3.1.3: Monoid

A monoid is a set M equipped with a binary operation “+” satisfying the following properties:

1. Closure. M is closed under “+”.

2. Associativity. For all a, b, c ∈M , (a+ b) + c = a+ (b+ c).

3. Identity Element. There is an element e in M such that for all a ∈M , a+ e = e+ a = a.

The relations among these concepts can be summarized as follows:

• A magma is the most basic algebraic structure (over a set).

• A semigroup is a magma with associativity.

• A monoid is a semigroup with an identity element.

3.2 Groups

Definition 3.2.1: Group

A group is a set G equipped with a binary operation “+” satisfying the following properties:

1. Closure. G is closed under “+”.

2. Associativity. For all a, b, c ∈ G, (a+ b) + c = a+ (b+ c).

25

3. Identity Element. There is an element e in G such that for all a ∈ G,

a+ e = e+ a = a

4. Inverse Element. For any a ∈ G, there is an element −a in G such that

a+ (−a) = (−a) + a = e

A group is called “Abelian” if it additionally satisfies the following property

5. Commutativity. For all a, b ∈ G, a+ b = b+ a.

Xiao!Xiao: Talk about the relation between Branching Program and Symmetric groups
Xiao!Xiao: Some book uses “factor group” to refer to “quotient group”. They are the same.

Here is a simple (but very useful) fact of finite group. It gives Euler’s theorem when instantiated
on group Z∗n. (The proof is omitted as it is obvious.)
Theorem 3.2.2:

Let G be a finite group of order m = |G|. Then ∀g ∈ G, gm = 1.
Specifically, if we set G = Z∗n (n ∈ N), this is the Euler’s theorem:

∀a ∈ Z∗n, aϕ(n) = 1 mod n.

Theorem 3.2.2 gives the following two very important corollaries. The first one is extremely
useful for cryptography as it tells a sufficient condition to construct permutation on finite groups.
The second one is helpful to compute large exponentiation on finite groups.

Corollary 3.2.1. Let G be a finite group of order m > 1. Let e > 0 be an integer, and define the
function fe : G→ G by fe(g) = ge. We have:

gcd(e,m) = 1 ⇒ fe is bijective

Moreover, if d = e−1 mod m then fd is the inverse of fe.
♢

Corollary 3.2.2. Let G be a finite group of order m > 1. Then for any g ∈ G and any integer
x,we have gx = gx mod m.

♢

Other interesting corollaries of Theorem 3.2.2 include:

• Let G be a finite group, and g ∈ G an element of order i. Then:

gx = gy ⇔ x = y mod i

• Let G be a finite group of order m, and say g ∈ G has order i. Then i|m.

26

3.2.1 Quotient Groups
The concept of quotient groups plays will play an important role when we talk about quantum
computing, especially for the stabilizer formalism for quantum error correction and fault tolerance
computation.

We start with the definition of normal subgroups.
Definition 3.2.3: Normal Subgroups

A subgroup N of a group G is called normal if for all g ∈ G, it holds that gN = Ng (or equivalently,
gNg−1 = N). We use N ◁ G to denote that N is a subgroup of G.

From Definition 3.2.3, it is easy to see that if G is Abelian, then every subgroup of G is a normal
subgroup.

The following Definition 3.2.4 says the cosets of a normal subgroup also form a group. We call
such groups as quotient groups. Note that G/N is a group only if N ◁ G; it does not hold if N is
an arbitrary subgroup G. Indeed, this was the original motivation to denote normal subgroups.
Definition 3.2.4: Quotient Groups

Let N ◁G. Then, G/N := {gN | g ∈ G} is a group under the operation (g1N) · (g2N) := (g1g2)N .
We call groups of the form G/N quotient groups.

Here are some interesting properties of quotient groups:

1. If G is finite, then |G/N | = |G|/|N |; (In general, |G/N | = |G : N |, i.e., the index of N in G.)

2. If G is Abelian, nilpotent, solvable, cyclic, or finitely generated, then so is G/N .

3. Denote π(g) := gN for all g ∈ G, then, π is a surjective homomorphism from G to G/N .

3.2.2 Cyclic Groups
Cyclic groups are a type of groups that is of special interest for cryptographers. Several number-
theoretic problems are conjectured to be intractable on cyclic groups, while there do exist some
non-cyclic groups where these problems are easy.

The first fact we what to stress is that every finite group of prime order is cyclic. This can be
regarded as another corollary of Theorem 3.2.2.
Theorem 3.2.5:

If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the
identity are generators of G.

The following theorem is very important. It shows that Z∗p is a cyclic group if p is a prime.
Note that is does not follow as a corollary of Theorem 3.2.5. Actually, its proof is very involved
but can be found in standard abstract algebra textbooks.
Theorem 3.2.6:

If p is prime then Z∗p is a cyclic group of order p− 1.

Why does cryptography prefer cyclic groups?

• A cyclic group can be described by a single generator. Also, every element is a generator.

27

In addition, cyclic groups of prime order enjoy additional advantages1:

• This is a consequence of the Pohlig–Hellman algorithm, described in Chapter 9, which shows
that the discrete-logarithm problem in a group of order q becomes easier if q has (small)
prime factors. This does not necessarily mean that the discrete-logarithm problem is easy in
groups of nonprime order; it merely means that the problem becomes easier.

• Related to the above, DDH problem is easy if the group order q has small prime factors. For
example, in group Z∗p with p a prime, discrete log is believed to be hard, but DDH is usually
easy. Thus, people have to use subgroups of Z∗p of prime order for DDH-based constructions
(see Theorem 3.2.7).

• Finding a generator in cyclic groups of prime order is trivial. In contrast, efficiently finding
a generator of an arbitrary cyclic group requires the factorization of the group order to be
known (see Appendix B.3 of [KL14]).

• When the group order is prime, any nonzero exponent will be invertible, making this compu-
tation of multiplicative inverses possible.

• Consider the DDH tuple (ga, gb, gab). For it to be indistinguishable form a random tuple, a
necessary is that gab by itself should be indistinguishable from a uniform group element. One
can show that gab is “close” to uniform (in a sense we do not define here) when the group
order p is prime, something that is not true otherwise.

We present a useful theorem w.r.t. the form of subgroups of Z∗p.
Theorem 3.2.7:

Let p = rq + 1 with p, q prime. Then G := {hr mod p | h ∈ Z∗p} is a subgroup of Z∗p of order q.

3.2.3 ZN , Z∗N , and RSA
Lemma 3.2.1. Let a ≥ 1, n > 1 be integers. Then a is invertible in Zn if and only if gcd(a, n) = 1.

♢

The RSA Assumption. We first define a set of all integers when are the product of two length-λ
primes:

Z
(2)
λ = {N |N = p · q where p and q are λ-bit primes.}

The RAS assumption conjunctures that the following problem is hard: for N $←− Z
(2)
λ , e such that

gcd(e, ϕ(N)) = 12 and y
$←− Z∗N , the computational task the adversary Adv is to find x such that

xe = y mod N . The (n, t, ε) hardness of RSA assumption is: no t-time algorithm Adv satisfies:

Pr[Adv(N, e, y) = x where xe = y mod N] > ε

Further discussion regarding the choice of e and other parameters can be found in [KL14].
1These are the reasons listed in [KL14]
2This requirement is to guarantee that e induces a permutation on Z∗

N (see Corollary 3.2.1) such that the RAS
problem is well defined. Namely, every y has a preimage under fe(x) = xe mod N .

28

3.2.4 Quadratic Residuosity

Legendre Symbol and Jacob Symbol.
Definition 3.2.8: Legendre Symbol

Let p be an odd prime. The Legendre symbol of an integer a is defined as

(
a

p

)
=


1 a is a QR and a 6= 0 mod p
−1 a is a QNR
0 a = 0 mod p

.

Lemma 3.2.2. Let p be an odd prime. Then
(
a

p

)
= a

p−1
2 . ♢

Definition 3.2.9: Jacobi Symbol

Let N be a positive odd integer. The Jacobi symbol of an integer a is defined as

JN(a) :=
k∏
i=1

(
a

pi

)αi

=

(
a

p1

)α1

·
(
a

p2

)α2

. . . ·
(
a

pk

)αk

,

where N = pα1
1 pα2

2 . . . pαk
k .

Xiao!Xiao: Through Section 3.2.4, we define N = pq, where p and q are primes of equal length.
A tentative outline:

• By Chinese remainder theorem, Z∗N ' Z∗p × Z∗q . Denote the isomorphism as y ↔ (yp, yq).

• For y ∈ Z∗N and y ↔ (yp, yq), it can be proved that y is a QR in Z∗N if and only if yp is a
QR in Z∗p and yq is a QR in Z∗q .

• The above implies: each QR y ∈ Z∗N has exactly four square roots.

• Let QRN set of quadratic residues modulo N . Let QNRN set of quadratic non-residues
modulo N . We have

|QRN |
|Z∗N |

=
|QRp| · |QRq|
|Z∗N |

=
p−1
2 ·

q−1
2

(p− 1)(q − 1)
=

1

4
.

Note that since Z∗p is cyclic, we can easily show that |QRp| = p−1
2 , i.e. half of the elements

in Z∗p are QRs.

• Also, for x, y ∈ Z∗N , we have

JN(x · y) = JN(x) · JN(y) = Jp(x) · Jq(x) · Jp(y) · Jq(y).

• Let J +
N (resp. J −N) denote the set of elements in Z∗N whose Jacobi symbol is +1 (resp. −1).

Let QNR+
N denote the set of elements in QNRN whose Jacobi symbol is +1. Then we can

29

show the follows:

– Z∗N = J −N ∪ J +
N and |J −N | = |J +

N |;
– J +

N = QRN ∪ QNR+
N and |QRN | = |QNR+

N |.

• Recall that when the factorization of N is unknown, there is no known polynomial-time
algorithm for deciding whether a given x is QR or not. But, somewhat surprisingly, a
polynomial-time algorithm is known for computing JN(x) without the factorization of N .

• Quadratic residuosity assumption says that it is hard to tell between a random sample from
QR and a random sample from QNR+.

Definition 3.2.1 (QR assumption). Quadratic residuosity assumption assumes that there
exists a generation algorithm Gen such that for all PPT algorithm Adv,∣∣Pr[Adv(N, qr) = 1]− Pr[Adv(N, qnr) = 1]

∣∣ ≤ negl(λ),

where the probabilities are taken over the following sampling (N, p, q)← Gen(1λ), qr $←− QRN
and qnr $←− QNR+

N . ♢

3.3 Rings
Definition 3.3.1 (Ring). A ring is a set R equipped with two binary operations “+”(usually called
addition) and · (usually called multiplication) satisfying the following properties:

1. R is an Abelian group under “+”.

2. R is a monoid under “·”.3

3. The multiplication is distributive with respect to the addition, meaning that:

• (Left Distributivity) For all a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c).
• (Right Distributivity) For all a, b, c ∈ R, (b+ c) · a = (b · a) + (c · a).

♢

Definition 3.3.2 (Ideal). A subring A of a ring R is called a (two-sided) ideal of R if for every
r ∈ R and every a ∈ A, both ra and ar are in A. ♢

Theorem 3.3.1. If A is an ideal of a ring R, then the quotient group R/A is a ring under the
following operation:

• Addition. (s+A) + (t+A) = (s+ t) +A

• Multiplication. (s+A) · (t+A) = (s · t) +A

3We remark that some mathematicians prefer to define the ring without multiplicative identity (the unity). So in
their definition, R is a semigroup under “·”, instead of a monoid. But some other mathematicians prefer the current
definition. We choose to use the current one because we almost always need the existence of unity. In this book, we
put “(with unity)” wherever we want to address it.

30

♢

There is special type of ideals defined on commutative rings that we are interested in, especially
when we talk about polynomial rings later. It is called principal ideal.

Definition 3.3.3 (Principal Ideal). Let R be a commutative ring (with unity) and let a ∈ R. The
set 〈a〉 = {ra | r ∈ R} is an ideal of R. We call it the principal ideal generated by a. ♢

3.4 Fields

Definition 3.4.1: Field

A field is a set F equipped with two binary operations “+” (usually called addition) and “·”
(usually called multiplication) satisfying the following properties:

1. F is an Abelian group under the addition.

2. F \ {0} form an Abelian group under the multiplication

3. The multiplication is distributive over the addition.

3.5 Modules and Vector Spaces

Definition 3.5.1: Modules

Let R be a ring (not necessarily with unity). A left (resp. right) R-module over R is a set M
together with:

1. a binary operation “+” under which M is an Abelian group.

2. a map R ×M → M (resp. M × R → M) denoted by “·”, such that for all r, s ∈ R and
m,n ∈M the following holds:

(a) (r + s) ·m = r ·m+ s ·m (resp. m · (r + s) = m · r +m · s)
(b) (rs) ·m = r · (s ·m) (resp. m · (rs) = (m · r) · s)
(c) r · (m+ n) = r ·m+ r · n (resp. (m+ n) · r = m · r + n · r)

If R has an unity 1, we impose an additional axiom to the map:

(d) 1 ·m = m (resp. m · 1 = m)

A Remark on the terminology: A bimodule is a module that is a left module and a right module
such that the two multiplications are compatible. If R is commutative, then left R-modules are
the same as right R-modules and are simply called R-modules4. Note that Item (d) is optional;
modules satisfying it are called unital modules.

One elegant application of modules in cryptography appears in the famous Groth-Sahai [GS08]
proof systems. It is not because they use fancy theorems specific to modules; rather, the concept of

4To some authors, “R-module” by default means “left R-module”, e.g. [DF04].

31

modules provides a high-level abstract for groups equipped with bilinear maps, thus gives a clear
and unified way to interpret their results.
Definition 3.5.2: Vector Space

Let F be a field. The F-module is called a vector space over the field F.

3.6 Integral Domains
We want to capture all the properties that integers enjoy. If we compare the definition of the ring
to the set of integers, two important properties are missing: (1) commutativity and (2) cancellation
property. Thus, people propose the concept of integral domain, which plays a prominent role in
number theory and algebraic geometry.

Definition 3.6.1 (Unit). we say that an element u of a ring R is a unit (also called “invertible
element”) if there is another element v ∈ R such that uv = vu = 1. ♢

Definition 3.6.2 (Zero Divisors). In a commutative ring R, a 6= 0 is a zero divisor if there is a
nonzero element b ∈ R such that ab = 0. ♢

Definition 3.6.3 (Integral Domain). An integral domain is a commutative ring (with unity) that
does not have zero divisors. ♢

Certain kinds of integral domain are of our interest. Next, we will list some related concepts
and then study them in order.

Definition 3.6.4 (Association). Elements a and b of an integral domain D are called associates if
a = ub, where u is a unit of D. ♢

Definition 3.6.5 (Reducibility). Let D be an integral domain. A non-zero, non-unit element a is
called an irreducible if the following holds:

• whenever a is expressed as a product a = bc with b, c ∈ D, then b or c is a unit.

A non-zero, non-unit element of D that is not irreducible is called reducible. ♢

Definition 3.6.6 (Primes). In an integral domain, a non-zero, non-unit element a is called a prime
if the following holds:

• a|bc implies a|b or a|c.

♢

3.6.1 Principal Ideal Domain (PID)
Definition 3.6.7 (Principal Ideal Domain). An integral domainD is called a principal ideal domain
if every ideal of D has the form 〈a〉 for some a ∈ D. ♢

Exercise 3.6.1. Here are some simple exercises to help you get a familiar with these concepts.

(a) In an integral domain, every prime is an irreducible.

(b) In a PID, an element is an irreducible if and only if it is a prime.

32

3.6.2 Unique Factorization Domain (UFD)
We now have the necessary terminology to formalize the idea of unique factorization.

Definition 3.6.8 (Unique Factorization Domain). An integral domain D is a unique factorization
domain if the following holds:

1. every non-zero, non-unit element of D can be written as a product of irreducibles of D,

2. the factorization into irreducibles is unique up to associates and the order in which the factors
appear.

♢

3.6.3 Euclidean Domain (ED) and GCD Domain
Definition 3.6.9 (Euclidean Domain (ED)). An integral domain D is called a Euclidean domain
if there is a function d (called the measure) from the nonzero elements of D to the nonnegative
integers such that:

1. d(a) ≤ d(ab) for all nonzero a, b ∈ D

2. if a, b ∈ D and b 6= 0, then there exist elements q and r in D such that a = bq + r, where
r = 0 or d(r) < d(b).

♢

From the above definition, it is easy to see that in an ED, the Euclidean algorithm is well
defined. Actually, we call it “Euclidean Domain” because it is the integral domain where we can
run Euclidean algorithm to compute the unique GCD between any pair of elements.

But we remark that GCD can be defined without referring to Euclidean algorithm. Actually,
there is a strictly super-set of ED, called GCD domain, where GCD is defined but may not be
unique, and Euclidean algorithm is not admitted.

Definition 3.6.10 (Greatest Command Divisor (GCD)). Let R is a commutative ring. We say
that d ∈ R is a greatest common divisor (GCD) of a, b ∈ R if the following two conditions are
satisfied:

1. d|a and d|b.

2. For any c ∈ R with c|a and c|b, we have c|d.

♢

Definition 3.6.11 (GCD Domain). An integral domain D is a GCD domain if for each pair of
a, b ∈ D \ {0}, there exists a greatest common divisor. ♢

Xiao!Xiao: Here is my intuition which needs to be verified: GCD in an ED must be unique. But
GCD in a GCD domain is not necessarily unique (counter examples?).

33

Theorem 3.6.1 (Relations among different types of Rings). The relations among different types
of rings can be summarized as follows:

ED ⊂ PID ⊂ UFD ⊂ GCD Domains ⊂
Integrally Closed Domains ⊂ Integral Domains ⊂ Commutative Rings

Note that all the subset relations are proper. ♢

3.7 Polynomials

3.7.1 The Ring-Theory Definition
The abstract-algebraic interpretation of polynomials is to consider it as a special ring, i.e. the
ring of polynomials. This is perhaps the most mathematically-correct approach to characterize
polynomials.

An intuitive way to understand this interpretation is as follows: we start by adding an extra
element x (called “indeterminate” or “variable”) to a commutative5 ring R. As we will see, it
actually gives us a new ring, which we denote as R[x]. Let us consider the form of elements in
R[x]. Because of the closure property of a ring, for any a ∈ R and any i ∈ N, axi should also be in
R[x], and so is their sum. Therefore, any expression of the form anx

n+ an−1x
n−1 + . . .+ a1x

1 + a0
should be an element in R[x]. This reminds us of the concept of polynomials. Moreover, it is easy
to prove that all elements of such a form do form a ring (i.e. all elements in R[x] have such a form).
Thus we name R[x] as the “polynomial ring”.

Definition 3.7.1 (Polynomial Ring). Let R be a commutative ring. The set of formal symbols

R[x] = {anxn + an−1x
n−1 + . . .+ a1x

1 + a0 | ai ∈ R,n is a nonnegative integer}

forms a ring under he natural polynomial addition and multiplication operation, with the natural
identity elements for addition and multiplication. ♢

Exercise 3.7.1

Here are some interesting exercises to reveal the relation between a polynomial ring and its
underlying ring.

1. If D is an integral domain, then D[x] is an Integral Domain.

2. If F is a field, then F [x] is a Principal Ideal Domain.

3. If F is a field, then F [x] is a Euclidean Domain (with the degree of polynomials as the
Euclidean measure).

The reducibility concept of polynomials is just an instantiation of the reducibility of a standard
integral domain on an ID of polynomials (see Def. 3.6.5).

5If the ring is not commutative, we will need to distinguish between ax2 and xax.

34

Definition 3.7.2: Reducibility of Polynomials over an ID

Let D be an integral domain. A non-zero, non-unit element f(x) ∈ D[x] is irreducible over D if
the following holds:

• whenever f(x) is expressed as a product f(x) = g(x) ·h(x) with g(x), h(x) ∈ D[x], then g(x)
or h(x) is a unit in D[x].

A non-zero, non-unit element of D[x] that is not irreducible over D is called reducible over D.

3.7.2 Schwartz-Zipple lemma
A crypto application of Schwartz-Zipple can be found in [KOS18].

But this lemma is widely used in PCP theorem, sum-check protocols and property testing.
An excellent survey of this lemma can be found in this article by Lipton.

Theorem 3.7.3: Schwartz-Zipple Lemma

Suppose that P (x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of total degree d over a field
F, and S is a non-empty subset of the F. Then,

Pr
[
P (x1, . . . , xn) = 0

]
≤ d

|S|
.

3.7.3 The Fundamental Theorem of Algebra
Xiao!Xiao: Add The Fundamental Theorem of Algebra here

3.7.4 On Fpn: An Application for [Sah99] NIZK
In [Sah99], Sahai used the number of roots of polynomials on finite fields to design a clever mech-
anism that enjoys the following property: for some parameters ℓ and t, it allows one to sample t
(a fixed polynomial) sets of size ℓ, such that no (t− 1) sets out of these t sets cover the remaining
one. This mechanism is essential to extend the famous [Sah99] non-malleable NIZK to support
(bounded) multiple proofs.

Xiao!Xiao: Add this application here. Abstract from [Sah99].

3.7.5 Shamir’s Secret Sharing
We start with the famous Lagrange’s interpolation, which is an elegant method to find a polynomial
that satisfies a bunch of points.

Algorithm 3.7.1 (Lagrange’s Interpolation). Given a set of k + 1 data points:

(x0, y0), . . . , (xi, yi), . . . , (xn, yn)

where no two xi’s are the same, the interpolation polynomial in the Lagrange form is defined as:

L(x) =

n∑
i=0

yi · ℓi(x) (3.1)

35

https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/

where each ℓi is:

ℓi(x) :=
∏

0≤m≤k
m ̸=i

x− xm
xi − xm

=
(x− x0)
(xi − x0)

· · · (x− xi−1)
(xi − xi−1)

(x− xi+1)

(xi − xi+1)
· · · (x− xn)

(xi − xn)
(3.2)

We have L(xi) = yi for all i ∈ {0, . . . , n}. And L(x) is a polynomial of degree at most n.
Lagrange’s interpolation can be generalized to any finite field, with the corresponding field

operation.

Remark 3.7.4:

We remark that Lagrange’s interpolation allow us to recover the whole polynomial express of
L(x). Actually, we can also recover L(x∗) at a certain point x∗. To do that, just evaluate ℓi(x∗)’s
according to Equation (3.2), and plug them into Equation (3.1). This is a simple observation, but
it turns to be very useful for building the Fuzzy IBE scheme in [SW05].

With the understanding of Lagrange’s interpolation, we are know ready to present Shamir’s
Secrete Sharing scheme.

Algorithm 3.7.2 (Shamir’s Secrete Sharing). A t-out-of-n secrete sharing scheme can be con-
structed in the following way.

Given a finite filed F, to share a secrete s:6

1. Choose a1, . . . at−1
$←− F.

2. Define a polynomial f(x) = s+ a1x+ . . . atx
t−1.

3. Choose n distinct points x1, . . . , xn ∈ F.

4. For i ∈ [n], output (xi, f(xi)) as the secret share for party Pi.

When t or more parties try to recover the secrete, they can recover the polynomial f(x) using
Lagrange’s interpolation, and then learn the secrete s from the constant term of f(x).

3.7.6 Verifiable Secret Sharing
Xiao!Xiao: add VSS

3.8 Discrete Fourier Transform
“Young man, in mathematics you don’t understand things. You just get used to them.”

— John Von Neumann

Usually, I’m against the above saying; but for Fourier transform, I surrender.
Xiao!Xiao:

• Distinguish between the terminologies: “discrete transform”, “fast Fourier transform” and
“Fourier transform”.

6W.l.o.g., we assume s ∈ F

36

• talk about it’s application to efficient integer multiplication

• See this YouTube playlist for an amazing series of talks on Fourier Transform (and Fourier
analysis in general).

• Also, relates to the quantum Fourier transform in Section 4.6.
The term “Fourier transform” can refer to different things. To avoid confusion, let me summarize

it in Table 3.1

Table 3.1: Various Types of Fourier Transform

Terminology Signal Continuity Signal Periodicity
Fourier Transform continuous infinite
Fourier Series continuous finite
Discrete-Time Fourier Transform discrete infinite
Discrete Fourier Transform discrete finite

The easiest way to memorize the dimension-N DFT is to view it as a Vandermonde matrix,
where the i-th row corresponds to ωi−1N , where ωN = e

2π
N
i. I.e.,

DFTN :=


(ω0
N)

0 (ω0
N)

1 · · · (ω0
N)

N−1

(ω1
N)

0 (ω1
N)

1 · · · (ω1
N)

N−1

...
...

(ωN−1N)0 (ωN−1N)1 · · · (ωN−1N)N−1

 (3.3)

Properties:

• DFTN is unitary (up to a scaling factor 1/
√
N). That is, DFTN√

N
is unitary. In other words,

DFTNDFT†N = DFT†NDFTN = N1N .

Quantum Fourier Transform (QFT). It is worth mentioning that the dimension-N quantum
Fourier transform (in Section 4.6) are nothing but the quantum-circuit implementation of the
unitary map DFTN√

N
.

Fast Fourier Transform (FFT). Fast Fourier transform is an algorithm that computes the
DFTNx in a fast way, where x ∈ CN . Note that the naïve implementation cost O(N2) field
operations (in C); in contrast, FFT allows us to do that in O(N logN) field operations.

37

https://www.youtube.com/watch?v=jNC0jxb0OxE&list=PLMrJAkhIeNNT_Xh3Oy0Y4LTj0Oxo8GqsC

Chapter 4
Linear Algebra for Quantum Information The-
ory

Xiao!Xiao: The familiarity with the following topics represents minimal background requirements for
quantum information theory. A great book for them is [Axl15].

• Define Hermitian matrix, positive semi-definite matrices. And talk about the eigenvalue
decomposition of them.

• Spectral decomposition (aka eigen-decomposition) is the factorization of a matrix into a
canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors.
Only diagonalizable matrices can be factorized in this way. This decomposition captures the
essence of density matrix (in quantum computing): every density matrix ρ (i.e. positive
semi-definite matrix with trace 1) have a spectral decomposition, where eigenvalues are non-
negative and the sum to 1, and the eigenvectors constitute orthonormal basis.

• Hilbert Space. The 2nd chapter of this lecture notes is a good reference.

• Schmidt Decomposition. Define Schmidt decomposition and talk about its application in
Uhlmann’s Theorem. See this.
A nice presentation for Schmidt Decomposition can be found at [KLM06, Section 2.7]. Show
the example that Schmidt Decomposition makes the computation of partial trace easier (from
[KLM06, Section 3.5.2]). Moreover, the way to compute Schmidt Decomposition can be found
at [KLM06, Appendix A.7].

4.1 Linear Algebra 101

4.1.1 The Second Nature
Let us make the following our second nature:

1. tr(A+B) = tr(A) + tr(B) and tr(A) = tr
(
AT
)
.

2. (Cyclic property of trace.) tr(ABC) = tr(CAB) = tr(BCA).

3. tr(A⊗B) = tr(A) tr(B). (Note that tr(AB) 6= tr(A) tr(B))

4. (AB)∗ = A∗B∗ and (AB)† = B†A†.

5. (A ⊗ B)∗ = A∗ ⊗ B∗, (A ⊗ B)T = AT ⊗ BT , and (A ⊗ B)† = A† ⊗ B†, where “†” denotes
Hermitian transpose (aka conjugate transpose).

6. The Kronecker product operator “⊗” is both bilinear and associative.

7. Another way to state Hadamard gate: for b ∈ {0, 1}, H |b〉 = 1√
2
(|0〉+ (−1)b |1〉).

38

https://www.math.ru.nl/~landsman/HSQM2006.pdf
https://courses.edx.org/courses/course-v1:CaltechDelftX+QuCryptox+3T2018/courseware/ad03d466a92145c09d107bf3d28f1b25/7497eadc9cdd4fc5a2bacd481a70bca1/?activate_block_id=block-v1%3ACaltechDelftX%2BQuCryptox%2B3T2018%2Btype%40sequential%2Bblock%407497eadc9cdd4fc5a2bacd481a70bca1

8. (Phase Kickback Trick.) This is also also called “Phase Oracle”. It says, for any classical
function f : {0, . . . , d − 1} → {0, 1} and any vector |j〉 in the computational basis1 (i.e.,
j ∈ {0, . . . , d− 1} for a d-dimensional system), it holds that

Uf |j〉 |−〉 = (−1)f(j) |j〉 |−〉 ,

where Uf is the reversible implementation of f , i.e., Uf |x, b〉 = |x, b⊕ f(x)〉.

Two main Workhorses from Quantum Computing. This trick is one of the main workhorse
from quantum computational power. It is behind the Deutsch [Deu85], Deutsch-Jozsa [DJ92],
Bernstein-Vazirani [BV93], and Grover’s Search [Gro96] algorithms. (Simon [Sim94] and Shor
[Sho94] did not use this trick because the target functions they considered have a different
range than {0, 1}.)
Another workhorse is quantum Fourier transform, which is behind Simon’s algorithm, period-
finding, discrete algorithms, and hidden subgroup problems. Most importantly, a particularly
useful implication of quantum Fourier transform is an algorithm called phase estimation.
Phase estimation is behind the celebrated Shor’s algoritm (i.e., factoring/order-finding)2,
and many applications related to simulating quantum systems.

9. (The Special QFT H⊗n.) A workhorse formula appeared in several quantum algorithms:

H⊗n |x1, . . . , xn〉 =
1

2n/2

∑
y∈{0,1}n

(−1)⟨x,y⟩ |y1, . . . , yn〉 ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are binary vectors, and 〈·, ·〉 is the inner product
(mod 2)3. This is pretty natural—indeed, H⊗n is just the QFT for the space (C2)⊗n.
This is the main magic behind Simon’s algorithm [Sim94].

4.1.2 High-Dimension Analog of the Imaginary Unit

Definition 4.1.1: Positive Operators (aka Positive Semi-definite Matrices)

A complex-valued matrix M is a positive semi-definite (resp. definite) matrix if:

• M is Hermitian (thus being normal, thus admitting spectral decomposition).

• All the eigenvalues of M is non-negative (resp. positive).

Positive semi-definite matrices are also called positive operators; Positive definite matrices are also
called positive definite operators.a

aSome authors refer to positive operators (i.e., semi-definite matrices) as “non-negative operators” (e.g., [Ren08]),
to avoid the confusion with positive definite operators

A useful way to see unitary/hermitian/positive operators:
1Note that f(·) is only defined on classical string j. It does not make sense to take about f(x) is |x⟩ is a general

quantum state, i.e., x cannot be expressed as a classical string.
2Shor’s algorithm consists of two steps: (1) a classical reduction from factoring to the order-finding problem; (2)

a quantum step where phase estimation is used to solve the order-finding problem.
3Actually, it does not matter if it is mod 2 or not, as the base is −1.

39

• Unitary operators U can be viewed as a high-dimension analog of i =
√
−1, because U †U =

UU † = I.

• Hermitian operators H can be viewed as a high-dimension analog of real numbers, because
H = H†.

• Positive operators (aka positive semi-definite matrices) can be viewed as a high-dimension
analog of non-negative real numbers.

• Positive definite matrices can be viewed as a high-dimension analog of positive real numbers.

• Projectors can be viewed as a high-dimension analog of {0, 1} (as {0, 1} are the only possible
eigenvalues for projectors).

• Density operators (i.e., trace-1 and positive operators) naturally generalizes probability dis-
tribution (as their eigenvalues are non-negative and sum up to 1).

The above intuition is well-illustrated by the spectral decomposition of these operators (see Sec-
tion 4.1.8).

4.1.3 Inner Product Spaces and the Cauchy-Schwarz Inequality
Cauchy-Schwarz Inequality is one of the most widely used inequality. It is worth emphasizing that
Cauchy-Schwarz ineqautliy holds in any inner product space. Let us first define inner product space
formally.
Definition 4.1.2: Inner Product Spaces

Let V be a vector space over the field F which is either R or C. An inner product on V is a map

〈·, ·〉 : V × V → F

that satisfies the following properties:

1. Linearity in the second argument. For any x, y, z ∈ V and any s ∈ F:

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 and 〈x, y〉 = s〈x, y〉.

2. Hermitian Symmetry (or Conjugate Symmetry). For any x, y ∈ V , 〈x, y〉 = 〈y, x〉.

3. Positive Definiteness. For any x ∈ V , if x 6= 0, then 〈x, x〉 > 0. (Note that this implies
that 〈x, x〉 must be real, even if F is C.)

An inner product space is a vector space V over F (being either R or C) along with an inner
product on V.

Here are some remarks:
• Some authors define linearity in the first argument. But linearity in the second argument

seems more natural

• Note that Properties 1 and 2 imply the following rules for the first argument:

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈sx, z〉 = s〈x, z〉.

40

Definition 4.1.3: Induced Norm on a Inner Product Space

Every inner product gives rise to a norm, called the canonical or induced norm, where the norm
of a vector x is denoted and defined by: ‖x‖ :=

√
〈x, x〉.

Remark 4.1.1 (On Positive Definiteness). Assuming 〈0, 0〉 = 0 holds (which follows from Prop-
erty 1), then Property 3 will hold if and only if both Properties 4 and 5 below hold:

4. Definiteness (or Point-Separating). If 〈x, x〉 = 0, then it must be that x = 0.

5. Positive Semi-definiteness (or Non-Negative-Definiteness). ∀x ∈ V, 〈x, x〉 ≥ 0.

Thus, Properties 1 to 5 are satisfied by every inner product.

Theorem 4.1.4: Cauchy-Schwarz Inequality

For all vectors x, y of an inner product space (see Definition 4.1.2), it holds that

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉, (or equivalently, |〈x, y〉| ≤ ‖x‖ · ‖y‖)

where ‖·‖ is the induced norm over the inner product space (see Definition 4.1.3), and | · | denotes
the modulus of complex numbersa.

aNote that the output of the inner product operation must be an element in F, which is either R or C. Thus,
|⟨x, y⟩| is always well defined for any ⟨x, y⟩.

4.1.4 Direct Sum
Xiao!Xiao: Need to talk about the concept of “direct sum”. It is important to decompose vector spaces

(e.g., in Jordan’s Lemma in Section 4.9). A good starting point for this concept is [Axl15, Section
1.C].

4.1.5 Tensor Products of Hilbert Spaces
At the center of quantum computing lies tensor product of vector spaces. The pure-mathematical
way to approach this concept involves formal discussion on tensor products of modules. Indeed,
vector spaces are just a special type of modules. The reader can find comprehensive explanation
for this perspective in [DF04, Chapter 10.4 and 11.5] and this lecture note by Prof. Conrad.

Fortunately, for quantum computing, we only need to focus on a very specific type of the above
concept, i.e. tensor product of Hilbert spaces. Before throwing out the definition, let me first
motivate it. We know that each isolated quantum system can be represent by a Hilbert space. Now
what should we do if we want to describe two (or more) quantum systems? To do that, ideally,
we hope to combine spaces V and W in a way that reserves all the good mathematical properties.
For example, the resulted space would better also be a Hilbert space, which be definition admits
some well-defined inner product operation. This turns to be achievable exploiting the Kronecker
product operation “⊗”.

41

https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf

Definition 4.1.5: Tensor Product of Hilbert Spaces

Let V and W be two Hilbert spaces. The tensor product of them is the Hilbert space V ⊗W whose
elements are linear combinations of |v〉 ⊗ |w〉 where |v〉 ∈ V , |w〉 ∈ W and ⊗ is the Kronecker
product. (The induced inner product operation is defined in Property 2.)

It is obvious that the above definition is well-defined, i.e. V ⊗W as defined above is indeed a
vector space. We now state two important facts about V ⊗W :

1. It can be proved that the linear operators on V ⊗ W are captured by matrix Kronecker
product A ⊗ B, where A and B are linear operators on V and W respectively. Namely, for
any |v〉 ∈ V and |w〉 ∈W ,

(A⊗ B)(|v〉 ⊗ |w〉) = A |v〉 ⊗ B |w〉 .

2. It can be proved that V ⊗W allows the following (natural) inner product 〈·, ·〉:

〈
∑
i

ai |vi〉 ⊗ |wi〉 ,
∑
j

bj
∣∣v′j〉⊗ ∣∣w′j〉〉 =∑

i,j

a∗i bj
〈
vi
∣∣v′j〉 〈wi∣∣w′j〉 .

4.1.6 Mixed-Product Property of Kronecker Product
This property is used everywhere in quantum computing/information theory paper. However, I
didn’t found a place where it is formally addressed. Thus, I will do it here.

This is a general property of the Kronecker product operation.
Lemma 4.1.6: Mixed-Product Property of Kronecker Product

Given matrices A, B, C and D, it holds that

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

as long as one can form the matrix products AC and BD. That is, the number of columns of A
(resp. B) equals the number of rows of C (resp. D).

As a special case of the mixed-product proerpty, we have the following inequality which is
particularly useful when computing partial traces:

|α0β0〉 〈α1β1| = (|α0〉 ⊗ |β0〉)(〈α1| ⊗ 〈β1|) = |α0〉 〈α1| ⊗ |β0〉 〈β1| .

Another popular use of this property is to factor-out tensor products of states.
• |a〉A |b〉B = (|a〉A ⊗ 1B)(1⊗ |b〉B) = (|a〉A ⊗ 1B) |b〉B.

• |a〉A |b〉B = (1A ⊗ |b〉B)(|a〉A ⊗ 1) = (1A ⊗ |b〉B) |a〉A.

• |a〉A⊗1B = (1A⊗1B)(|a〉A⊗1B). We emphasis that |a〉A⊗1B 6= (1A⊗1B)(|a〉A⊗1) = |a〉A.
This is a misunderstanding that tends to happen among beginners. Remember that always
check if the dimensions match as w.r.t. MATRIX multiplication. Matrix-scalar
multiplication does not count.

• In summary, we have

|a〉A |b〉B = (1A ⊗ 1B)(1A ⊗ |b〉B) |a〉A = (1A ⊗ 1B)(|a〉A ⊗ 1B) |b〉B .

42

https://en.wikipedia.org/wiki/Kronecker_product

4.1.7 Projectors and the Completeness Relation for Orthonormal Basis
A very important linear operators is projectors (or projections).
Definition 4.1.7: Projectors

A projector on a vector space V is a linear operator P : V → V such that P2 = P. On a subspace
W ⊆ V , we say that P is a rank-k projector if there are k eigenvalue-1 eigenvectors of P falling in
W (i.e., k is the dimension of the intersection space between W and the space P projects onto).
Note that P is a rank-d projector in the whole space V where d is P’s matrix rank.

Here are some properties of projectors:

• The eigenvalues of projectors take values from {0, 1}: Let λ denote the eigenvalue of a pro-
jector P. By definition, λ2u = P2u = Pu = λu, which implies that λ ∈ {0, 1}.

• It is not true that projectors are always Hermitian. Counterexample:

A =

[
1 1
0 0

]
6=
[
1 0
1 0

]
= A†.

This counterexample also shows that not all projectors are normal:

AA† =

[
1 0
0 0

]
6=
[
1 1
1 1

]
= A†A.

Definition 4.1.8: Orthogonal and Oblique Projectors

An orthogonal projector is a projector that also satisfies P† = P (i.e. Hermitian). A projection
matrix that is not an orthogonal projection matrix is called an oblique projection matrix.
It is worth noting that an orthogonal projector is always normal, thus supports spectral decom-
position (see Definition 4.1.9 and Theorem 4.1.11).

Xiao!Xiao: Orthogonal projectors are an important class of projectors and enjoy interesting proper-
ties. Add more discussion about them. (See here.)

Geometrically, projectors represent the projection operation from V to its subspace (depend on
P). Namely, if we have a vector v ∈ V , Pv is a vector lies in the subspace of V that is defined
according to P; P2 = P just reflects the fact that once the vector v is brought to the subspace,
further applications of P will not move it anymore.

[NC11, Section 2.1.6] takes an alternative (and equivalent) way to define projectors. It considers
a dimension-d vector space V and a dimension-k subspace W ⊆ V (where k ≤ d). By Gram-
Schmidt procedure, it is easy to see that there is a set of orthonormal basis {|1〉 , . . . , |d〉} such that
{|1〉 , . . . , |k〉} constitutes a set of orthonormal basis for W . Then the projector onto the subspace
W can be defined as

P =
k∑
i=1

|i〉 〈i| .

Then Definition 4.1.7 simply follows as a property. This approach also reveals the connection
between projectors and completeness relation for orthonormal vectors.

Xiao!Xiao: talk about the relation between completeness relation for orthonormal vectors and pro-
jectors to subspace. Useful materials can be found at Section 2.1.6 and Section 2.1.4 of [NC11].

43

https://en.wikipedia.org/wiki/Projection_(linear_algebra)#Orthogonal_projections

An example: the space R2 is spanned by orthonormal basis {
(
1
0

)
,

(
0
1

)
}. It is easy to check that

it satisfies the completeness relation. However, when
(
1
0

)
and

(
0
1

)
are treated as the orthonormal

basis for the subspace R2 of a larger space R3, they should be augmented as {

1
0
0

,
0
1
0

}. In this

form, they do not satisfies the completeness relation anymore. To fix that, we need to add the third

element

0
0
1

 in the set of orthonormal basis for R3.

4.1.8 Normal Operators and Spectral Decomposition

Definition 4.1.9: Normal Operator

A normal operator on a complex Hilbert space is a continuous linear operator P such that

P†P = PP†.

(Since the term “linear operators” can be used interchangeably with “matrices”, people also refer
to “normal operators” as “normal matrices”.)

The following theorem provides an extremely important characterization of normal projectors.
It is a special case of the famous Spectral Theorem (see also the discussion in Section 4.1.9).
Theorem 4.1.10: Unitary Diagonalization of Normal Matrices

An operator A on a complex Hilbert space is normal if and only if it is unitarily diagonalizable.
Namely, it can be written as A = UΛU†, where U is a unitary matrix and Λ is a diagonal matrix.

Proof. By the Schur decomposition, we can write any complex matrix as A = UΛU†, where U is
unitary and Λ is upper-triangular. This implies that if A is normal, we must have ΛΛ† = Λ†Λ (i.e. Λ
is also normal). Therefore, Λ must be diagonal: a normal upper triangular matrix is diagonal. The
converse is obvious. ■

Theorem 4.1.10 appears in a slightly different form in [NC11, Section 2.1.6]. Since this form is
more quantum-mechanics friendly, we present it in the following.
Theorem 4.1.11: Spectral Decomposition of Normal Operators

A linear operator P on a vector space V is normal if and only if it is diagonalizable with respect
to some orthonormal basis for V , i.e. it can be decomposed as:

P =
∑
i

λi |i〉 〈i| , (4.1)

where (λi, |i〉)’s are the eigenvalue-eigenvector pairs of P, and {|i〉}i form an orthonormal basis
for V .

44

https://en.wikipedia.org/wiki/Spectral_theorem
https://en.wikipedia.org/wiki/Schur_decomposition

In terms of projectors, Equation (4.1) can also be written as P =
∑

i λiPi, where λi are again
the eigenvalues of P, and Pi is the projector onto the λi eigenspace of P. These projectors satisfy
the completeness relation

∑
i Pi = I, and the orthonormality relation PiPj = δijPi, where δij is

the Kronecker delta.
Here are some special normal operators (thus enjoying the spectral decomposition):

• Unitary Operators: operators represented by matrix U such that U †U = I.

• Hermitian Operators: operators represented by matrix H such that H† = H.

• Positive Operators: operators represented by positive semi-definite matrices (Definition 4.1.1).
Note that these operators are Hermitian by definition. Also, note that density operators are
necessarily positive (thus normal, thus diagonalizable).

These special types of normal operators of course enjoy richer properties that general normal
operators does not. That can be illustrated by their respective spectral theorems:
Theorem 4.1.12: Spectral Decomposition of Hermitian Operators

Let H be a Hermitian operator on a dimension-n vector space V. Let its spectral decomposition
be H =

∑n
i=1 λivi. Then, the following hold:

1. ∀i ∈ [n], λi is real;

2. The collection {vi}ni=1 forms an orthonormal basis for the whole space V. (This is inherited
from Theorem 4.1.11.)

Theorem 4.1.13: Spectral Decomposition of Unitary Operators

Let U be a Hermitian operator on a dimension-n vector space V. Let its spectral decomposition
be U =

∑n
i=1 λivi. Then, the following hold:

1. ∀i ∈ [n], |λi| = 1;

2. The collection {vi}ni=1 forms an orthonormal basis for the whole space V. (This is inherited
from Theorem 4.1.11.)

4.1.9 Spectral Decomposition and Eigenvalue Decomposition (Diagonalization)
in General

As we mentioned earlier, Theorem 4.1.11 is actually a part of the larger topic of eigenvalue decom-
position (aka diagonalization).

We first need to define diagonalizable matrices (operators) formally.
Definition 4.1.14: Diagonalizable (and Defective) Matrices

A n × n matrix A over a field F is called diagonalizable (aka nondefective) if there exists an
invertible matrix P such that Λ = P−1AP is a diagonal matrix. A square matrix is called
defective if it is not diagonalizable.

45

Definition 4.1.15: Eigenvalue Decomposition

Let A be a diagonalizable matrix (see Definition 4.1.14). Then, its diagonalization A = PΛP−1
(derived from Definition 4.1.14) is called its eigenvalue decomposition.

In the following, we give several equivalent characterizations of diagonalizable (aka eigenvalue-
decomposable) matrices. These claims can be proved easily from the definition of the matrix of an
operator with respect to a basis.

• An n×n matrix A over a field F is diagonalizable if and only if the sum of the dimensions of its
eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting
of eigenvectors of A. If such a basis {qi}ni=1 has been found, then A can be factorized as
A = PΛP−1, where P is the n× n matrix whose i-th column is the qi, and Λ is the diagonal
matrix whose diagonal elements Λii = λi. (The matrix P is known as a modal matrix for A.)

• A linear map T : V → V is diagonalizable if and only if the sum of the dimensions of its
eigenspaces is equal to dim(V), which is the case if and only if there exists a basis of V
consisting of eigenvectors of T. With respect to such a basis, T will be represented by a
diagonal matrix. The diagonal entries of this matrix are the eigenvalues of T.

All the above can be summarized by the following lemma:
Lemma 4.1.16: Equivalence between Eigendecomposition and Diagonalization

A square matrix has eigendecomposition if and only if it is diagonalizable.

Spectrum Decomposition vs Eigenvalue Decomposition. With the above discussion, The-
orem 4.1.11 (and Theorem 4.1.10) has a more natural interpretation: it just says that any n × n
normal matrix A has exactly n orthonormal eigenverctors. In more details, if we put all the or-
thonormal eigenverctors column by column, they will form a n×n unitary matrix U ; and A has the
eigendecomposition A = UΛU†. Note that U plays the role of P in Definition 4.1.14 as U† = U−1.

In summary, spectrum decomposition is nothing but the eigenvalue decomposition for normal
matrices (see Definition 4.1.9). In general, eigenvalue decomposition only ensures that the eigen-
values are linearly independent; But they may not be orthogonal. (That is, Definition 4.1.14 only
says that P is an invertible matrix; But its columns may not be orthogonal). In contrast, spectrum
decomposition (i.e., when the concerted matrix is normal) additionally ensures that P is also a
orthonormal matrix (i.e., has orthogonal columns).

As a side mark: if we consider the eigenvalue decomposition for a matrix that is Hermitian,
then not only that the it is a spectrum decomposition (because all Hermitian matrices are normal),
but additionally the eigenvalues are all real-valued. This is what Theorem 4.1.12 says.

4.1.10 Jordan Normal Form
Then, what can we do with defective matrices (Definition 4.1.14)? The answer is the Jordan normal
form [Jor70]4.

Xiao!Xiao: add Jordan normal form here.
4Do not confuse this with Jordan’s lemma(s) (See Remark 4.9.3).

46

4.1.11 Singular-Value Decomposition
In quantum computing, we often deal with normal matrices. Recall that normal matrices are
(unitarily) diagonalizable (Theorem 4.1.10). Thus, by Lemma 4.1.16, they must have spectrum
decomposition.

However, under certain circumstances, we need to deal with matrices that are not normal or
diagonalizable. What should we do for them? The answer is Singular-Value Decompositon (SVD).
SVD can be viewed as a generalization of eigenvalue decomposition (discussed in Sections 4.1.8
and 4.1.9) to arbitrary matrices (even non-square ones).
Definition 4.1.17: Singular-Value Decomposition

Any m × n complex matrix M can be factorized as M = U�V†, where U is an m × m complex
unitary matrix, V is a n × n complex unitary matrix, and � is a m × n diagonal matrix with
non-negative real numbers on the diagonal.
We call M = U�V† a singular-value decomposition (SVD) of M. Some terminologies follow:

• (Unique) Singular Values. The diagonal entries σi = Σii (i ∈ min{m,n}) are uniquely
determined by M and are known as the singular values of M.

• Rank. The number of non-zero singular values is equal to the rank of M. (This is indeed
another way to define rank for non-square complex matrices.)

• Left and Right Singular Values. The columns {|vi〉}i∈[m] of U and the columns
{|wi〉}i∈[n] of V are called left singular vectors and right singular vectors of M, respectively.
They form two sets of orthonormal bases. If they are sorted so that the singular values σi
with value zero are all in the highest-numbered columns, the singular value decomposition
can be written as M =

∑r
i=1 σi |vi〉 〈wi|, where r ≤ min{m,n} is M’s rank.

Several important properties of SVD follow:

1. The above definition claims that every complex matrix M must have SVD. This is a fact that
can be proven.

2. SVD of a given matrix M is not unique.

3. If M is real, then U and V can be guaranteed to be real orthogonal matrices; In such contexts,
the SVD is often denoted as M = U�V⊤.

4. It follows immediately from Definition 4.1.17 that for any i ∈ {1, 2, . . . ,min{m,n}}, it holds
that M |wi〉 = σi |vi〉. This geometric property of SVD is a strict generalization of that of
spectrum decomposition, i.e., M |vi〉 = λi |vi〉.

Xiao!
5. Xiao: to do...

Xiao!Xiao: SVD can provide a more unified point of view and reveal the essence of some operations
behind the scene. A great example is when we try to define norms for matrices. (In the following,
keep in mind that by definition, singular values are non-negative.)

• The Spectral Norm of a matrix M is actually the infinite norm of the vector consisting of
M ’s singular values (i.e., M ’s largest singular value).

• The Trace Norm of M is actually the summation of M ’s singular values.

47

• Singular Value Decomposition can be viewed as M =
∑

i si |ai〉 〈bi|, where {si}i are the
singular values and {ai}i and {bi}i are two sets of orthonormal basis.

Therefore, I find it necessary to present here a formal discussion of SVD.
A good starting point is this video.

4.1.12 Two Ways to Formalize Partial Trace

Definition 4.1.18: Partial Trace

The best way to define partial trace is the following:

trB(ρAB) =
d∑
i=1

(1A ⊗ 〈ei|B)ρAB(1A ⊗ |ei〉B), (4.2)

where d = dim(B) and {|ei〉}i∈[d] is an arbitrary set of basis for B. Some authors prefer the
following simplified expression of Equation (4.2): trB(ρAB) =

∑d
i=1 〈ei|B ρAB |ei〉B.

The formalism in Equation (4.2) makes it clear that partial trace fits into the Kraus-Operator
formalism of quantum channels (Theorem 4.5.4). It makes it obvious that partial trace is CPTP
(see Section 4.5.3). This is because

trB(ρAB) = (1A ⊗ trB)ρAB =
d∑
i=1

(1A ⊗ 〈ei|B)ρAB(1A ⊗ |ei〉B), (4.3)

where we just write down the Kraus operators {1A⊗〈ei|}B (see Section 4.5.2). Due to this reason,
people also call {Ni := 1A ⊗ 〈i|B}i (where {|i〉B}i is some orthogonal basis for system B) the
trace-out or (discarding) channel5. It is easy to see that {Ni}i satisfy the requirements for being
Kraus operators, i.e.,

∑
iN
†
i Ni = 1AB. (Note that Ni : L(AB)→ L(A).)

Another way to define partial trace is to formalize it only for product states, and then its effects
on general states follows naturally from the linearity of quantum physics.
Definition 4.1.19: Partial Trace (An Alternative Definition)

For any tensor product of rank-one operators (not necessarily corresponding to a state) ρAB =
|x1〉 〈x2|A ⊗ |y1〉 〈y2|B, let

trB(ρAB) := |x1〉 〈x2|A tr
(
|y1〉 〈y2|B

)
= 〈y2|y1〉B |x1〉 〈x2|A . (4.4)

To see why Definitions 4.1.18 and 4.1.19 are equivalent, consider a general (i.e., not necessarily
product) state ρAB. It can always be expanded with an orthonormal basis {|i〉A , |j〉B}i,j as

ρAB =
∑
i,j,k,ℓ

λi,j,k,ℓ |i〉 〈k|A ⊗ |j〉 〈ℓ|B , (4.5)

where λi,j,k,ℓ’s are non-negative and sum up to 1.6 Plugging Equation (4.5) into Equation (4.4), it
follows immediately that

5More accurately, if the whole system is traced out, it is called a discarding channel; if only part of the system is
traced out, it is called a trace-out channel

6Recall that any density matrix is positive semi-definite (thus normal, thus diagonalizable) and trace-1.

48

https://www.youtube.com/watch?v=nbBvuuNVfco&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv&index=2

trB(ρAB) = trB
(∑
i,j,k,ℓ

λi,j,k,ℓ |i〉 〈k|A ⊗ |j〉 〈ℓ|B
)
=
∑
i,j,k

λi,j,k,j |i〉 〈k|A =
∑
i,k

(∑
j

λi,j,k,j
)
|i〉 〈k|A .

(4.6)
Moreover, it is also easy to see that plugging Equation (4.5) into Equation (4.3) will yield the same
expression as the RHS of Equation (4.6). Thus, Definitions 4.1.18 and 4.1.19 are equivalent (for
density operators).

4.1.13 Unique Linear Extension of Convex Linear Operators
We know that a quantum channel N (·) : D(H) → D(H) is always convex linear, which is defined
formally in Definition 4.1.20.
Definition 4.1.20: Convex Linear Maps

A map N (·) : D(H)→ D(H) is convex linear if for any ρ, σ ∈ D(H) and any α ∈ [0, 1],

N
(
αρ+ (1− α)σ

)
= αN (ρ) + (1− α)N (σ).

Let us also formally defined linear maps.
Definition 4.1.21: Linear Maps

A map N (·) : L(H)→ L(H) is linear if for any ρ, σ ∈ L(H) and any α, β ∈ C,

N
(
αρ+ βσ

)
= αN (ρ) + βN (σ).

Then the following holds.
Lemma 4.1.22: Unique Linear Extension [HZ11, Proposition 2.30]

For a convex linear operator N (·) : D(H) → D(H) as defined above, there exists a unique linear
extension Ñ of N , whose action is well defined on the space of all operators X ∈ L(H) (i.e., on
all the linear operators over the Hilbert space H).

See [Wil11, Appendix B] for the proof of Lemma 4.1.22.
One important implication of Lemma 4.1.22 is that: we can assume without loss of generality

that a convex linear map is always linear. This does not really relax the assumption, as the former
can always be extended to the (unique) latter.

4.1.14 Ajoint
Xiao!Xiao: The conjugate transpose operation for complex numbers/matrices is actually a special case

of the ajoint operation. see [Wil11, Section 4.4.5].
talk how to use it to reverse isometries. (see .e.g, [Wil11, Page 163])

49

4.1.15 Bloch Coordinates

Pure State on the Bloch Sphere: For a general pure qubit |ϕ〉 = cos(θ/2) |0〉+ eiψ sin(θ/2) |1〉, the
following equality holds:

|ϕ〉〈ϕ| =
[

cos2(θ/2) e−iψ sin(θ/2) cos(θ/2)
eiψ sin(θ/2) cos(θ/2) sin2(θ/2)

]
(4.7)

=
1

2

[
1 + cos(θ) sin(θ)

(
cos(ψ)− i sin(ψ)

)
sin(θ)

(
cos(ψ) + i sin(ψ)

)
1− cos(θ)

]
(4.8)

=
1

2
(12 + rxX + ryY + rzZ) (4.9)

=
1

2

[
1 + rz rx − iry
rx + iry 1− rz

]
, where


rx = sin(θ) cos(ψ)
ry = sin(θ) sin(ψ)
rz = cos(θ)

. (4.10)

In the above, ||r := (rx, ry, rz)||2 = 1 is due to the fact that |ϕ〉 is a pure state. It is also worth noting
that r is nothing but the coordinate in the sphere coordinate system (w.r.t. the Block Sphere). See
Figure 4.1.

Figure 4.1: Rectangular to Spherical Coordinates

Here are some interesting properties of Bloch coordinate for a general qubit ρ:

1. The RHSs of Equations (4.9) and (4.10) always represent a density operator (of a potentially
mixed qubit) as long as ||r||2 ≤ 1;

2. rx = tr(Xρ), ry = tr(Y ρ), and rz = tr(Zρ);

3. The eigenvalues of a general qubit density operator are {12(1 + ||r||2),
1
2(1− ||r||2)};

4. A mixture {pj , |ϕj〉}j with coordinates {rj}j gives a density matrix with the Bloch vector
r =

∑
j pjrj .

4.2 Useful Geometric Properties of Vectors in Hilbert Space
Xiao!Xiao: Talk about fidelity, trace distance, and widely-used inequalities that captures several impor-

tant geometric relations, include

50

https://en.wikipedia.org/wiki/Spherical_coordinate_system

• Concepts and inequalities from [AHU19, Section 5.1].

4.3 The Four Postulates of Quantum Mechanics
From a mathematical point of view, the whole area of quantum computing can be derived from
the following 4 postulates of quantum mechanics (together with linear algebra for Hilbert spaces).
The formalism is taken verbatim from Nielsen and Chuang [NC11], with my comments.

1. (State.) Associated to any isolated physical system is a complex vector space with inner
product (aka Hilbert space) known as the state space of the system. The system is completely
described by its density operator, which is a trace-one positive operator7 ρ, acting on the
state space of the system. If a quantum system is in the state ρi with probability pi, then the
density operator for the system is

∑
i piρi.

Rationale behind Postulate 1

Why Hermitian?

• Real Eigenvalues: Hermitian matrices have real eigenvalues. Since the eigenvalues of
the density matrix represent probabilities (or in the case of mixed states, the weights
of pure states in the mixture), these values must be real numbers. Non-Hermitian
matrices can have complex eigenvalues, which would not make sense in the context of
probability.

• Physical Observables: In quantum mechanics, any observable (such as position, mo-
mentum, or spin) is represented by a Hermitian operator. Since the density matrix
is used to calculate expectation values of observables (e.g., 〈A〉 = Tr[ρA] for some
observable A), the density matrix itself must be Hermitian to ensure that these ex-
pectation values are real and physically meaningful.

• Symmetry: The Hermitian nature of the density matrix also ensures that the probabil-
ities and coherences (off-diagonal elements) in the density matrix are symmetric with
respect to complex conjugation. This symmetry is essential for consistent physical
interpretation, especially in quantum coherence and interference phenomena.

• Also note that there is a lemma regarding Hermitian matrices:

– A square matrix H is hermitian if and only if H = UΛU †, where U is unitary
and Λ is a diagonal matrix with only real-valued elements.

Why positive semi-definite?

• This requirement arises because the eigenvalues of the density matrix represent prob-
abilities, which must be non-negative. If the density matrix ρ were not positive semi-
definite, it could imply negative probabilities, which are not physically meaningful.
Mathematically, for any vector |ψ〉, the value 〈ψ| ρ |ψ〉 must be non-negative (for
positive semi-definite ρ’s). This condition ensures that any measurement outcome has
a non-negative probability, aligning with the principles of probability theory.

7This term “positive operator” comes from functional analysis, where positive operators are defined by positive
semi-definite matrices. Note that these matrices are Hermitian by definition (Definition 4.1.1).

51

Why trace one?

• The trace of the density matrix, Tr(ρ) = 1, ensures that the total probability of all
possible outcomes of a quantum measurement sums to one. In quantum mechanics,
the trace represents the sum of the eigenvalues of the density matrix, which are the
probabilities of the system being in each of its possible pure states.

• Since the density matrix can be expressed as a statistical mixture of pure states
ρ =

∑
i pi|ψi〉〈ψi|, where pi are probabilities, the sum of these probabilities

∑
i pi

must equal one, reflecting the fact that the system must be in one of the possible
states with certainty.

2. (Evolution.) The evolution of a closed quantum system is described by a unitary transfor-
mation. That is, the state ρ of the system at time t1 is related to the state ρ′ of the system
at time t2 by a unitary operator U which depends only on the times t1 and t2,

ρ′ = UρU †.

3. (Measurement.) Quantum measurements are described by a collection {Mm} of measure-
ment operators. These are operators acting on the state space of the system being measured.
The index m refers to the measurement outcomes that may occur in the experiment. If the
state of the quantum system is ρ immediately before the measurement then the probability
that result m occurs is given by

p(m) = tr
(
MmρM

†
m

)
,

and the state of the system after the measurement is

MmρM
†
m

tr
(
MmρM

†
m

) .
The measurement operators satisfy the completeness equation,∑

m

M †mMm = I.

This postulate is also known as the Born rule.

4. (Composition.) The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have systems numbered 1
through n, and system number i is prepared in the state ρi, then the joint state of the total
system is ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn.

4.4 POVMs and Projective Measurements

Positive Operator-Valued Measure. POVM measurements is used when we only care about
the measurement outputs, but not the post-measurement states. A nice discussion about projective

52

measurements, POVM, and Naimark’s dilation theorem can be found here.
Definition 4.4.1: Positive Operator-Valued Measure

A POVM is a set of matrices {Em} on a Hilbert space H satisfying the following properties

1. Each Em is a positive semi-definite matrix (aka positive operator, see Definition 4.1.1);

2.
∑

mEm = I.

The probability of measuring m is simply: p(m) = tr(Emρ). Note that Condition 1 ensures that
this probability is non-negative; Condition 2 ensures that all the probabilities sum up to 1.

Here are some useful properties of POVMs:

• For a POVM {Em}, each Em is normal, thus admitting spectral decomposition.

• For a POVM {Em}, there always exists {Pm} such that P †mPm = Em for all m. To see why,
just set Pm =

√
Em. The square root operation is well defined as Em is positive semi-definite

(see Definition 4.1.1).

• Each Em is normal (i.e., E†mEm = EmE
†
m), thus admitting spectral decomposition.

Projective Measurements. This is a special case of POVM. Projective measurements are defined
by observables (see Remark 4.4.1).
Definition 4.4.2: Projective Measurements

A projective measurement is described by an observable M . Since M is Hermitian (thus, normal),
M has the following spectrum decomposition (Theorem 4.1.11): M =

∑
mmPm, where each Pm

is the projector onto the eigenspace of M with eigenvalue m.
The projective measurement is simply the POVM defined by {Pm}. (It is not hard to see that
{Pm} satisfy the two conditions in Definition 4.4.1, because each Pm is the projector onto the
eigenspace of M with eigenvalue m.)

Remark 4.4.1 (Observables). Roughly speaking, an observable is a Hermitian operator on the state
space of the system being observed. Actually, this is a physical term that I do not fully understand.
But it seems that in finite-dimensional Hilbert space, one can just treat observables as Hermitian
matrices8, since observables on finite-dimensional Hilbert spaces are always Hermitian. Roughly,
the name “observables” come from the fact that measurements are essentially measuring (thus,
“observing”) the eigenvalues of observables; the outcome of the measurement is a eigenvalue of the
observable, and the state after measurement collapses to the corresponding eigenvector (also called
“eigenstate”).

Here is an example distinguish between POVMs and projective measurements. Consider the
following measurement:

• Measure {|0〉〈0| , |1〉〈1|} with probability 1
2 , and measure {|+〉〈+| , |−〉〈−|} with probability 1

2 .
8See this Quora answer.

53

https://en.wikipedia.org/wiki/Naimark%27s_dilation_theorem
https://physics.stackexchange.com/questions/184524/what-is-the-difference-between-general-measurement-and-projective-measurement
https://www.quora.com/Does-every-Hermitian-operator-in-Hilbert-space-correspond-to-an-observable-in-quantum-mechanics

This is a POVM specified by {Ei}i∈[4], where

E1 =
1

2
|0〉〈0| , E2 =

1

2
|1〉〈1| , E3 =

1

2
|+〉〈+| , E4 =

1

2
|−〉〈−| .

It is easy to see that {Ei}i∈[4] satisfy the two conditions in Definition 4.4.1. But it cannot be
interpreted as a projective measurement (Instead, it is a probabilistic mixture of two projective
measurements).

4.5 Quantum Operations (aka Channels) from a Mathematical
Point of View

In this section, we present 3 equivalent interpretations of quantum operations (aka channels). A
great explanation can be found here.

4.5.1 Stinespring’s Representation of Quantum Channels
See this link for the origin of the name.
Definition 4.5.1: Operational Definition of Quantum Channels

As an implication of Schrödinger’s equation, quantum operations can be classified as:

1. unitaries, which is captured by unitary operations on quantum states.

2. adding systems, which is captured by isometry operations (Definition 4.5.3) on quantum
states. Isometries can be viewed as an extension of unitaries from a lower-dimension space
to a higher-dimension space that preserves length.

3. partial trace.

All the above types of operations can be captured by a unitary process happening on a larger
system (Hilbert space), followed by a “tracing out” operation. This is sometimes referred to as the
“Church of Larger Hilbert Space”. This is formally stated as Theorem 4.5.2.

Note that we provide two versions in Theorem 4.5.2. But they are of course equivalent because
the isometry in the second “different-space” version can be viewed as a part of the unitary on the
larger space in the first “same-space” version. In more details, the isometry V in the second version
is a rectangular matrix formed from selecting only a few of the columns from the unitary U in
the first version. The property V V † = ΠBE distinguishes the isometric operation from the unitary
one. It states that the isometry takes states in the input system A to a particular subspace of the
joint system BE. The projector ΠBE projects onto the subspace where the isometry takes input
quantum states. (See also [Wil11, Section 5.2.1] for this point of view.)
Theorem 4.5.2: Stinespring Dilation Theorem

Same-Space Version: Let T : S(H) 7→ S(H) be a completely positive and trace-preserving
(CPTP, see Section 4.5.3) map between states on a finite-dimensional Hilbert space H. Then
there exists a Hilbert space K and a unitary operation U on H ⊗K such that

T (ρ) = trK
(
U(ρ⊗ |0〉〈0|)U †

)
(4.11)

54

https://courses.edx.org/courses/course-v1:MITx+8.371.1x+2T2018/courseware/Week2/lectures_m1_2/?activate_block_id=block-v1%3AMITx%2B8.371.1x%2B2T2018%2Btype%40sequential%2Bblock%40lectures_m1_2
https://www.quantiki.org/wiki/church-larger-hilbert-space

for all ρ ∈ S(H), where trK denote the partial trace on the K-system.a

Different-Space Version: Let N : L(HA) → L(HB) be a quantum channel. Let HE be a
Hilbert space with dimension no smaller than the (Choi rank) of the channel N . An isometric
extension or Stinespring dilation of the channel N is a linear isometry V : HA → HB ⊗HE such
that

∀XA ∈ L(HA), N (XA) = trE(V XAV
†).

The fact that V is an isometry is equivalent to the following conditions:

V †V = 1A and V V † = ΠBE ,

where ΠBE is a projection of the tensor-product Hilbert space HB ⊗HE .
aA remark on the efficiency: It is worth noting that if T is described as a circuit, then there is a dilation UT

represented by a circuit of size O(|T |).

Remark 4.5.1 (Isometry between Hilbert Spaces). The formal definition of isometry is presented
in Definition 4.5.3. But in quantum computing, we usually focus on the special case where the
metric spaces are Hilbert spaces. In this context, isometry means a map V ∈ L(H,H′) with
dim(H) ≤ dim(H′) such that ‖[‖2]|ψ〉 = ‖[‖2]V |ψ〉 (or equivalently, V †V = 1H). An isometry can
be viewed as a generalization of a unitary, because it maps between spaces of different dimensions
but satisfying V †V = 1H. However, it is worth noting that it does not need to satisfy V V † = 1H′.
Rather, it satisfies V V † = ΠH′, where ΠH′ is some projection onto H′ (i.e., it is easy to see that
(V V †)(V V †) = V V †).

Isometries capture both Type 1 and Type 2 operations. A key example to keep in mind is the
following isometry: V |ψ〉 = |ψ〉 ⊗ |0〉; for this V , it is easy to see that V ρV † = ρ ⊗ |0〉〈0|, exactly
as we expected.

Indeed, isometries are just equivalent to unitaries in terms of being an Kraus operator (see the
last part of Section 4.5.2).

Definition 4.5.3: Isometry

Let X and Y be metric spaces with metrics dX and dY . A map f : X → Y is called an isometry
or distance preserving if for any a, b ∈ X one has: dY

(
f(a), f(b)

)
= dX(a, b).

Xiao!Xiao:

Naimark’s Dilation. There is a similar dilation theorem for measurements, which can be under-
stood as an analog of Stinespring’s dilation which is for unitaries. This theorem is called Naimark’s
dilation. It essentially says that any measurement can be viewed as a projective measurement on a
compound register that includes the original register as a subregister. A formal treatment for this
lemma can be found at [Wat18].

4.5.2 Choi-Kraus Decomposition of Quantum Channels
This is also called operator-sum representation of quantum channels. For a rigorous discussion,
refer to [NC11, Theorems 8.1 and 8.3]. (For the proof of Theorem 4.5.4, check [Wil11, Section 4.4],
which I found cleaner than that in [NC11])

55

Theorem 4.5.4: Choi-Kraus Decomposition

Let H and G be Hilbert spaces of dimension n and m respectively, and Φ be a completely-
positive (but not necessarily trace-preserving, see Remark 4.5.2) linear map between L(H) and
L(G). Then, there are (not necessarily unique) matrices {Bi}1≥i≥nm (where Bi ∈ L(H,G) for all
i ∈ [nm]) such that for any ρ ∈ L(H),

Φ(ρ) =
∑
i

BiρB
†
i , and

∑
i

B†iBi ≤ 1H

Conversely, any map Φ of this form is a quantum operation, provided that∑
i

B†iBi ≤ 1H. (4.12)

Remark 4.5.2 (On Trace Preservation). If the “≤” sign is replaced with “=” in Inequality (4.12),
Theorem 4.5.4 captures only trace-preserving operations (i.e., CPTP operators); the above formalism
(with the “≤” sign) captures also non-trace-preserving operations. For more discussion, see [NC11,
Section 8.2.3].

We also emphasis that there could exist different Choi-Kraus decompositions of the same quan-
tum channel. The famous depolarizing channel (parameterized by a probability p) serves as a good
example:

Depop(ρ) = (1− p)ρ+ p

3
XρX† +

p

3
Y ρY † +

p

3
ZρZ†

=

(
1− 3p

4

)
ρ+

3p

4

I

2

The Choi-Kraus Decomposition for Stinespring’s Dilation. The partial-trace in Stine-
spring’s dilation equation Equation (4.11) can be expressed as a sequence of Kraus operators.
There is nothing surprising about this as we know that these interpretation of quantum channels
are indeed equivalent. But I view this a good exercise for beginners to get familiar with the mixed
product property of the Kronecker product (see Lemma 4.1.6). That is,

trK
(
UHK(ρH ⊗ |0〉〈0|K)U †HK

)
=
∑
i

(1H ⊗ 〈i|k)UHK(ρH ⊗ |0〉〈0|K)U †HK(1H ⊗ |i〉k)

=
∑
i

(1H ⊗ 〈i|k)UHK(1H ⊗ |0〉K)ρH(1H ⊗ 〈0|K)U †HK(1H ⊗ |i〉k)

=
∑
i

BiρHB
†
i ,

where
{
Bi := (1H ⊗ 〈i|k)UHK(1H ⊗ |0〉K)

}
i

form a set of Kraus operators as per Theorem 4.5.4.
(Note that the second equality relies on the mixed product property of the Kronecker product.) To
see that, one can easily compute that

∑
iB
†
iBi = 1H . This is left as an exercise. (Hint: you will

need to use the mix product property several times).

Choi-Kraus Decomposition for Unitary/Isometry Evolution. Unitary evolution is a special

56

kind of quantum channel in which there is a single Kraus operator U ∈ L(H) that is unitary, i.e.,
satisfying UU † = U †U = 1H .

Recall that in Remark 4.5.1, we argued that isometries (Definition 4.5.3) are just the generalized
unitary between Hilbert spaces of different dimension. Indeed, as in the case of unitary channels,
an isometry channel V is just a single Kraus operator V ∈ L(H1,H2) satisfying V †V = 1H1 (but
it may not true that V V † = 1H2).

4.5.3 Axiomatic Definition of Quantum Operations (or the CPTP formalism)
The presentation of this formalism is based on [Wil11, Section 4.4] and this lecture of MIT 8.371
course, which is equivalent to Theorem 4.5.4 when Inequality (4.12) is restricted to the “=” sign
only. It starts by asking “what properties should a general quantum operator satisfy?” The
following conditions turn out to be complete:

1. Convex Linearity: First, quantum mechanics is a linear theory. Moreover, consider the
experiment that prepares the ensemble {px, ρx} such that px’s are the probability distribution
for ρx’s. Then, we want that conducting some experiment on this ensemble will lead to the
same result no matter we know the actual state ρx before the experiment starts or after the
experiment ends (of course, taking also the probability distribution px into consideration).
This requires that the channel should be convex linear (Definition 4.1.20). It then follows
from the discussion in Section 4.1.13 that we can actually assume linearity w.l.o.g.

2. Hermiticity Preserving: a hermitian input should lead to a hermitian output. Some
textbook omit this property, because we anyway require “Completely Positive” below, and
positive operators are Hermitian by definition (Definition 4.1.1).

3. Trace Preserving: just as unitaries preserve length, our quantum operations should preserve
trace.

4. Completely Positive: just like the non-negativity condition on stochastic maps. Here,
“Positive” (Definition 4.5.5) means that if ρ is positive semi-definite9, then Φ(ρ) is positive-
semidefinite. However, we need a stronger condition for it to be correct. We need to stipulate
that if we act on any part of ρ it should stay positive. That is, if ρAR is positive semi-
definite, then (Φ⊗ 1R)(ρAR) should also be positive semi-definite. This is what we mean by
“Completely”. This is formalized in Definition 4.5.6.
(As a comparison, transpose is positive but not completely positive. As a side note: the
partial positive transpose test (PPT) is one test of an entangled state: if PPT fails, it must
be an entangled state)

We remark that [NC11, Section 8.2.4] contains a slightly different version of the above axiomatic
representation, which is equivalent to Theorem 4.5.4 (with Inequality (4.12) as it is).
Definition 4.5.5: Positive Linear Map

A linear map M : L(HA) → L(HB) is positive if M(XA) is positive semi-definite for all positive
semi-definite XA ∈ L(HA).

9This is what we mean by “non-negative”

57

http://web.mit.edu/8.371/www/lectures/lect02.pdf

Definition 4.5.6: Completely Positive Linear Map

A linear map M : L(HA) → L(HB) is completely positive if 1R ⊗M is a positive linear map
(Definition 4.5.5) for a reference system R of arbitrary size..

4.6 Quantum Fourier Transform

Recall that QFT are nothing but the quantum implementation of DFTN√
N

, where DFTN is defined in
Equation (3.3). Thus, it is straightforward to see its effect on computational basis {|x〉}x∈{0,...,N−1}:
The Quantum Fourier Transform FN for N -level quantum system is defined by the following unitary
mapping:

∀x ∈ {0, 1, . . . , N − 1}, FN : |x〉 7→ 1√
N

N−1∑
y=0

ωx·yN |y〉 ,

where the x · y is just the standard integer multiplication, and ωN is (one of the) N -th roots of
unity, i.e. ωN = e

2πi
N .10 For an arbitrary state, the quantum Fourier transform can be written as:

N−1∑
j=0

xj |j〉 7→
N−1∑
k=0

yk |k〉 ,

where yk = 1√
N

∑N−1
j=0 xje

2πi
N
kj , which is exactly the classical discrete Fourier transform.

Remark 4.6.1 (Memorize QFT quickly). The way I memorize the N -level QFT is to view it as
FN =

∑N−1
j=0

∣∣∣j̃〉 〈j|, where

• {|j〉}j∈{0,...,N−1} is the computational basis; and

•
{ ∣∣∣j̃〉 := 1√

N

∑N−1
k=0 ω

jk
N |k〉

}
j∈{0,...,N−1} is the Fourier basis.

QFT as the Hadamard Gate for Qudits. QFE are nothing but the analog of Hadamard gate
for qudits. For level-d quantum system (in the previous part, d = N), the analog of X and Z gates
are defined as follows (both of them are parameterized):

• The X-Gate. ∀x ∈ {0, . . . , d− 1}, X(x) |j〉 = |x+ j mod d〉 for all j ∈ {0, . . . , d− 1};
The spectral decomposition of X(x) is as follows:

X(x) =

d−1∑
ℓ=0

e−
2πi
d
ℓx
∣∣∣ℓ̃〉〈ℓ̃∣∣∣ , with

∣∣∣ℓ̃〉 =
1√
d

d−1∑
j=0

e
2πi
d
ℓj |j〉 .

Note that the eigenvalues of X(x) do not depend on the parameter x, but the eigenvectors
do. It it also worth noting that the eigenvalues of X(x) (regardless of x) is just the Fourier

10Recall that all the numbers of the following form are the N -th roots of unity: e 2πi
N

k for k ∈ {0, 1, . . . , N − 1}.
Also recall that i = e

πi
2 and −1 = eπi.

58

transformed basis! That is, for all ℓ ∈ {0, . . . , d− 1},

∣∣∣ℓ̃〉 = Fd |ℓ〉 =
1√
d

d−1∑
j=0

e
2πi
d
ℓj |j〉 .

• The Z-Gate. ∀z ∈ {0, . . . , d− 1}, Z(z) |j〉 = e
2πi
d
zj |j〉 for all j ∈ {0, . . . , d− 1};

As one can expect, Z(z) has diagonal matrix representation with respect to the qudit compu-
tational basis states {|j〉}j∈{0,...,d−1}. It can be proven that [Z(z)]j,k = e

2πi
d
zjδj,k, where δj,k

is Kronecker’s delta. This immediately reveals its clean spectral decomposition:

Z(z) =
d−1∑
j=0

e
2πi
d
zj |j〉〈j| ,

where {|j〉}j∈{0,...,d−1} is simply the computational basis.

Therefore, the quantum Fourier transform is just the unitary that transform the Z(z)
eigenvectors to X(x) eigenvectors. (Recall that the eigenvectors of both X(x) and Z(x) are in-
dependent of their respective parameter.) In the 2-level (i.e. qubit) setting, F2 is just the Hadamard
gate (which takes transforms the eigenvectors of Z to that of X).

QFT in Binary Representation. Let N = 2n. For j ∈ {0, 1, . . . , N − 1}, consider the following
binary representation of integers

j = [j1j2 . . . jn]2 = j12
n−1 + . . .+ jn2

0 =
n∑
ℓ=1

jℓ · 2n−ℓ;

also, consider the following binary representation of fractions

0.j = [0.jℓjℓ+1 . . . jm]2 =
jℓ
2
+
jℓ+1

22
+ . . . ,

jm
2m−ℓ+1

.

Then, (it follows from some tedious calculation that) the quantum Fourier transform can be written
as:

|j〉 = |[j1j2 . . . jn]2〉 7→
1√
2n

n⊗
ℓ=1

(
|0〉+ e

2πi

2ℓ
j |1〉

)
=

1√
2n

(
|0〉+ e2πi·[0.jn]2 |1〉

)(
|0〉+ e2πi·[0.jn−1jn]2 |1〉

)
. . .
(
|0〉+ e2πi·[0.j1j2...jn]2 |1〉

)
(4.13)

It is worth noting that Equation (4.13) is crucial for the efficient11 implementation of QFT. More-
over, there are also important applications of QFT that requires the specific form of Equation (4.13),
e.g., phase estimation.

Xiao!Xiao: Talk about the following simple applications of quantum Fourier Transform

• distinguishing pure state and entangled state: perform QFT, and then measure. See [Zha19,
Section 1] and [BZ13, Thoerem 4.2].

11It is worth memorizing that QFTN can be implemented using a circuit of size O(log2N) = O(n2).

59

• the oracle recording paper [Zha19].

4.7 (In)distinguishability of Quantum States
In classical cryptography, the concept of distance is crucial for formal security proofs. According to
the security goal, we may use different types of distances, e.g. statistical distance, computational
distance (indistinguishability).

Therefore, a crucial step toward quantum information theory and cryptography would be to
define a proper distance. One of the most useful definition is trace distance.
Definition 4.7.1: Trace Distance

The trace distance of two density matrices ρ and σ is defined as

T (ρ, σ) :=
1

2
tr |ρ− σ|,

where for a matrix A, |A| =
√
A†A.

On the Motivations for Trace Distance. [NC11, Section 9.2] provides explanations on the
choice of this concept as a useful measure for the distance among quantum states/systems. But
I find that this lecture (with this video) approaches the concept in a more interesting way. It
draws analogy between classical probability theory and quantum probability theory, and reveals
the measure-theoretical reason behind the concept of trace distance by introducing Schatten norm
and dual norm. This video by Prof. O’Donnell shares a similar perspective.

For quantum cryptography or information theory, this concept is useful mainly due to the
following two properties (see [NC11, Section 9.2] for more details):

• T (ρ, σ) = maxP {tr
(
P (σ − ρ)

)
}, where the maximization may be taken alternately over all

projectors P , or over all positive operators P ≤ I. Given the fact that POVM elements
are positive operators that are ≤ I, this property implies that trace distance is equal to the
difference in probabilities that a measurement outcome with POVM element P may occur,
depending on whether the state is ρ or σ, maximized over all possible POVM elements P .

• (Contractiveness.) Suppose Ψ is a trace-preserving quantum operation. Let ρ and σ be
density operators. Then T

(
Ψ(ρ),Ψ(σ)

)
≤ T (ρ, σ). This property says that (trace-preserving)

quantum operations can never separate two quantum states farther than their original trace
distance.

4.8 Quantum Entropy

Definition 4.8.1: Von Neumann Entropy

The von Neumann entropy of a quantum state ρ is defined as

S(ρ) := − tr
(
ρ log(ρ)

)
= −

∑
x

λx log(λx),

where {λx}x are the eigenvalues of ρ. We stipulate that 0 log 0 := limx→0 x logx = 0.

60

http://web.mit.edu/8.371/www/lectures/lect03.pdf
https://courses.edx.org/courses/course-v1:MITx+8.371.1x+2T2018/courseware/Week2/lectures_m1_2b/?child=first
https://www.youtube.com/watch?v=ExtKG1ISmAI&list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz&index=25

Properties of von Neumann entropy:

1. If ρ is a classical probability distribution, von Neumann entropy boils down to Shannon
entropy H(X) = −

∑n
i=1 Pr(X = xi) log

(
Pr(X = xi)

)
.

2. For any ρ on a D-dimension Hilbert space, S(ρ) ≤ log(D), where we have “=” when ρ = 1D
D ,

i.e., the maximally mixed state.

3. S(ρ) ≥ 0. It equals 0 when ρ is a pure state.

4. |S(ρA)− S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB), where ρA = trB(ρAB) and ρB = trA(ρAB). The
LHS is called Araki-Lieb Inequality (or Triangle Inequality), and the RHS is referred to as
sub-additivity.

5. Strong Sub-Additivity. S(ρABC) ≤ S(ρAB) + S(ρBC)− S(ρB).

6. If ρAB is pure, then S(ρA) = S(ρB).

4.9 Jordan’s Lemma [Jor75]
This is an important lemma that has found numerous applications in quantum computing and
cryptography.12

Lemma 4.9.1: Jordan’s Lemma [Jor75]

For any two Hermitian projectors �A and �B on a Hilbert space H, there exists an orthogonala
direct-sum decomposition (recall from Section 4.1.4) of H = ⊕jSj into one-dimensional and two-
dimensional sub-spaces {Sj}j (dubbed the Jordan subspaces), where each Sj is invariant under
both �A and �B. Moreover:

• In each one-dimensional Jordan subspace, �A and �B act as identity or rank-zero projectors
(recall the definition for projectors’ rank in Definition 4.1.7); and

• In each two-dimensional subspace Sj , �A and �B are rank-one projectors. In particular, there
exist distinct orthogonal bases {|vj,1〉 , |vj,0〉} and {|wj,1〉 , |wj,0〉} for Sj such that �A projects
onto |vj,1〉 and �B projects onto |wj,1〉.

(include a picture for an exemplary Sj)

aWe emphasis that direct-sum decompositions do not always gives orthogonal subspaces. This orthogonality is
a result of Jordan’s Lemma that requires a proof.

Proof. A complete proof is given in Regev’s lecture notes. (While [CMSZ21] also gives a proof,
their proof does not show that the subspaces {Sj}j are orthogonal.) ■

Corollary 4.9.2: Properties of Jordan Decomposition

Using the same notation as in Lemma 4.9.1, the following holds:

1. In H, it holds that Img(�A) = span{|vj,1〉}j and Img(�B) = span{|wj,1〉}j .

12Do not confuse it with the Jordan’s lemma in complex analysis.

61

https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf
https://en.wikipedia.org/wiki/Jordan's_lemma

2. For each j, the vectors |vj,1〉 and |wj,1〉 are corresponding left and right singular vectors of
the matrix �A�B with singular value σj = | 〈vj,1|wj,1〉 |. The same is true for |vj,0〉 and |wj,0〉
w.r.t. respect to (I− �A)(I− �B). (cref to the picture mentioned in Lemma 4.9.1. highlight where the
singular value sj is.)

Xiao!Xiao: to do:
Discuss its most recent applications in [NWZ09, CCY20] and [CMSZ21].
The introduction to Jordan’s lemma can be found at Section 1.2.3 of Vidick’s notes and Regev’s

notes.
Remark 4.9.3: A Historical Note on Jordan’s Lemma(s)

The Jordan’s lemma discussed above has nothing to do with Jordan normal form in Section 4.1.10,
except that both of them are due to Camille Joran. Jordan normal form first appeared in 1870
[Jor70], while Jordan’s lemma (as per) appeared in 1875 [Jor75] (See [Bha96, Chapter VII.8] for
a detailed history for this one).
Also, here is another Jordan’s lemma in complex analysis [Jor93] (yes, Camille Jordan again),
which is also irrelevant to the Jordan’s lemma discussed above.

4.10 Quantum Circuits

4.10.1 Phase-Shift Gates

We use Pθ to denote the phase-shift gate: Pθ :=
[
1 0
0 eθi

]
. We have the following relations:

• Pauli-Z gate: Z =

[
1 0
0 −1

]
=

[
1 0
0 eπi

]
= Pπ

• The π
8 -gate T =

[
1 0

0 e
π
4
i

]
= Pπ/4 = 4

√
Z. Note that T is called the “π8 -gate”, though a more

proper name might be “π4 -gate”. This is due to some historical reason: People used to express

T in the following form: T = e
π
8
i

[
e−

π
8
i 0

0 e
π
8
i

]
=

[
1 0

0 e
π
4
i

]
, where the π

8 shows in the diagonal

elements.

• The phase gate: S =

[
1 0
0 i

]
=

[
1 0

0 e
π
2
i

]
= Pπ/2 = T 2 =

√
Z. Note that in the literature,

phase gate might be denoted as P gate (e.g., [BY22]), instead of S. I guess the reason is “P”
is the initial letter of the word “phase.”

• In general, Pπ/r = r
√
Z for all r ∈ R \ {0}.

4.10.2 Gates from a Group-Theory Viewpoint
Following the convention, I use the following notation:

σ0 = I =

[
1 0
0 1

]
, σ1 = X =

[
0 1
1 0

]
, σ2 = Y =

[
0 −i
i 0

]
, σ3 = Z =

[
1 0
0 −1

]

62

http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf
https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf
https://en.wikipedia.org/wiki/Jordan%27s_lemma

Definition 4.10.1: Pauli Group

The n-qubit Pauli group is defined as follows:

Pn :=
{
e

π
2
iθσj1 ⊗ . . .⊗ σjn | ∀θ ∈ {0, 1, 2, 3} and ∀jk ∈ {0, 1, 2, 3}

}
(4.14)

Note that eπ
2
iθ takes the values ±1 and ±i when θ varies in {0, 1, 2, 3}. We need it in Ex-

pression 4.14 to ensure that Pn forms a legitimate group. For example, for the 1-qubit case, we
have

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

Here are simple properties of the Pauli group:

1. |Pn| = 4n+1.

2. Any P ∈ Pn has eigenvalues ±1 or ±i.

3. For any P,Q ∈ Pn either commute (PQ = QP) or anti-commute (PQ = −QP). Note that
physicists use [P,Q] = 0 (resp. {P,Q} = 0) to denote commute (resp. anti-commute).

4. For any P ∈ Pn, P 2 = ±1n.

Definition 4.10.2: Clifford Group

The Clifford group is defined as the group of unitaries that normalize the Pauli group:

Cn :=
{

U ∈ U(C2n) | UPnU† = Pn
}
.

It is also called the normalizer group of Pn, denoted as N(Pn).

We remark that the Clifford group can be generated by {H,S,CNOT}. More accurately,
Theorem 4.10.3: Generators for Clifford Group (or Clifford Gates)

For any U ∈ Cn, up to a global phase, U may be composed from O(n2) gates from the set
{H,S,CNOT}. Due to this theorem, people usually call the set {H,S,CNOT} Clifford gates.

A proof sketch for Theorem 4.10.3 can be found at [NC11, Section 10.5.2] where the authors
discuss the stabilizer formalism. (Gates {H,S,CNOT} are also called “normalizer gates” in [NC11]
because they normalize the Pauli group.13)

4.10.3 Universal Quantum Circuits
Xiao!Xiao: Use the following outline:

• In the following, we use T to denote the π/8 gate; we use S to denote the phase gate. That
is,

T :=

[
1 0

0 eiπ/4

]
, S := T 2 =

[
1 0
0 i

]
.

• Show how to implement any circuit using exponentially many gates (see Henry Yuen’s lecture).
13For some reason that I do not know, [NC11] did not call Cn the “Clifford Group”.

63

https://www.youtube.com/watch?v=F7i4NTX_ijc

• The “1 + 2” Universal Set. All the 1-qubit gates plus one “entangling” 2-qubit gate is
universal. This is an exact implementation (i.e., not an approximation). In terms of efficiency,
if I’m not wrong, to implement a 2n × 2n unitary, we will need O(n24n) gates.
A Historical Remark: this fact was stated in [KLM06, Theorem 4.3.3] without proof; its proof
is due to Bremner et al. [BDD+02]. [NC11]’s approach is to first talked about the two-level
unitary decomposition, and then use the CNOT gate as the entangling 2-qubit gate to obtain
a universal set. I think [NC11] made this choice because when this book’s was originally
published (October 2000), the [BDD+02] paper was not published yet.

• Show that it is impossible to use a countable set of gates to implement any circuits. Counting
argument (check [KLM06, NC11]). So we have to resort to approximation.

• Notion of approximation ([KLM06, Section 4.3])

• Do the [KLM06, NC11] approach

• The most important thing for this section: Solovay-Kitaev theorem. It handles efficient
approximation of 1-qubit gates with negligibly-close accuracy.
The following is the version from Henry’s lecture:

Theorem 4.10.4: Solovay-Kitaev Theorem

Let Γ be a set of 1-qubit unitaries such that:

1. Γ generates a dense subgroup of SU(2);

2. Γ is closed under inverse.

Then, any 1-qubit unitary in SU(2) can be ε-approximated by a product of at mostO
(

logc 1
ε

)
gates from the set Γ, where c ≈ 2 is a universal constant.

It is worth noting that Γ := {H,T} satisfies the requirements in Theorem 4.10.4.

• Examples of universal gate sets:

– {H,T,CNOT}.
– {H,S,Tof}. This set is less preferable than {H,T,CNOT}: Tof is a 3-qubit gate but

CNOT is only a 2-qubit gate.
– Clifford gates (i.e., {H,S,CNOT}) plus the T gate. Recall that S is the phase gate

(i.e., T 2). Clifford group is an important concept that need to be discussed. (See
Definition 4.10.2 and theorem 4.10.3)

• Also, talk about Toffoli gate and its application in quantum error correction.

– Toffoli gate is the CCNOT gate. It maps (a, b, c) to (a, b, c⊕ (a ∧ b)).
– Toffoli gate itself is universal. In this sense, it is the quantum analog of NAND gate.

64

4.11 Magic States, Quantum Teleportation, and Transversal Im-
plementation of the T-gate

Xiao!Xiao:

• In short, the state |A〉 = 1√
2
(|0〉 + e

π
4
i |1〉) is called the magic state. With the help of magic

states, we can implement the T gate using only a (single) controlled S gate. (Recall that S
is in the Clifford group. Thus, it follows that the Clifford generators plus magic states (as
auxiliary states) can implement any quantum circuits.

• Start with the discussion at this StackExchagne Q&A.

4.12 The Theoretical Framework for Quantum Error Correction
Xiao!Xiao: Vidick instructed a Quantum Error Correction course in Semester B 2023 at Weizmann

Institute of Science. The course page contains many useful resources.
This section is devoted to the following fundamental questions of quantum error correction:

1. How to model quantum error?

2. Why can we even hope to correct quantum error?

3. When can we correct quantum error?

I will not discuss any concrete QECC (e.g., the CCS code or stabilizer code) because there already
exist several standard quantum information theory textbooks explaining these topics in a very clean
way. However, in contrast, the answers to the above three questions provided in those textbooks
are usually obscure or at least not beginner-friendly. So, it behooves me to give a cleaner and easier
explanation.

To answer Question 1, we resort to the Kraus Decomposition formalism (Section 4.5.2) of
quantum channels. Quantum errors are nothing other than a special type of quantum channels,
and the Kraus Decomposition formalism is the most mathematically-convenient model to discuss
such channels.

Xiao!Xiao: Add the definitions of quantum error channels here using the Kraus Decomposition
formalism.

To answer Question 2, let focus on the case of single-qubit errors. We first remark that cor-
recting Pauli errors (the errors represented by elements in {X,Y, Z}) is not hard. Also, note that
{I,X, Y, Z} form a basis for all the 2 × 2 matrices. Then, since quantum mechanics is a linear
theory, correcting errors captured by {X,Y, Z} is equivalent to correcting all single qubit errors.
Shor’s 9-qubit QEEC is a great illustration of this philosophy.

Xiao!Xiao: Also need to talk about multi-qubit errors, and the low-order errors in the error expan-
sion...

The answer to Question 3 is provided by a famous theorem that pins down the sufficient and
necessary conditions for correctable quantum errors. This theorem appears in [NC11], but I per-
sonally do not like the way they formalize (and prove) it. Here, I present the version due to Daniel
Gottesman [Got10, Theorem 3]14.

Xiao!
14Actually, Theorem 4.12.1 is stated differently from [Got10, Theorem 3]. The original [Got10, Theorem 3] is a

special case of Theorem 4.12.1 where |ψ⟩ = |ϕ⟩ and Ea = Eb. But (surprisingly) one can show that these two versions
are equivalent.

65

https://quantumcomputing.stackexchange.com/questions/13629/what-are-magic-states
https://www.weizmann.ac.il/math/vidick/quantum-error-correction-semester-b-2023

Xiao: The following Theorem 4.12.1 is the well-known Knill-Laflamme theorem. I later found
that Section 7.2 in Preskill’s notes contains a more beginner-friendly explanation if it than the
following Gottesman’s version.
Theorem 4.12.1: Quantum Error-Correction Conditions

A subspace Q is a QECC for the set of E iff ∀ |ψ〉 , |ϕ〉 ∈ Q, ∀Ea, Eb ∈ E , it holds that

〈ψ|E†aEb |ϕ〉 = cab 〈ψ|ϕ〉 , (4.15)

where each cab is a complex number that only depends on a and b and does not depend on |ψ〉 or
|ϕ〉. We remark that Equation (4.15) implies that cba = c∗ab. That is, {cab}a,b form a Hermitian
matrix.

This formalism is of course equivalent to [NC11, Theorem 10.1]. But Theorem 4.12.1 talks
about codewords directly, instead of encoding projectors as in [NC11, Theorem 10.1]. So, the
current Theorem 4.12.1 makes the underlying intuition more clear:

The errors are correctable if they preserve the relative relation between |ψ〉 and |ϕ〉, up
to some scalar cab that only depends on the errors (or the error channel), but not the
encoded quantum states.

The condition encoded by Equation (4.15) can be obtained by the following reasoning. If E
is a set of correctable errors, then for any errors Ea, Eb ∈ E and any codewords |ϕ〉 and |ψ〉, the
corrupted states must lie in orthogonal subspaces; otherwise, we will not be able to detect the some
special errors Ea, Eb when then happen on some special codewords |ϕ〉 and |ψ〉. This is captured
by the following requirement:

〈ψ|E†aEb |ϕ〉 = c′aδab 〈ψ|ϕ〉 , (4.16)

where c′a is a scalar representing the “scaling” errors15 that are due to the error channel but
independent of the quantum states (or codewords). Next, recall that we can actually correct any
errors that lie in the linear space spanned by the elements in E . Thus, we can define an arbitrary
element from this linear space as Fa =

∑
s αasEs. We can plug Fa and Fb in to Equation (4.16):

〈ψ|F †aFb |ϕ〉 =
∑
s,t

α∗asαbt 〈ψ|E†sEt |ϕ〉 =
∑
d

α∗adαbdc
′
d 〈ψ|ϕ〉 ,

which gives us Equation (4.15) with cab =
∑

d α
∗
adαbdc

′
d.

4.12.1 Bounds for QECC
The quantum analogue of the Hamming bound for classical error correction code.
Lemma 4.12.2: Quantum Hamming Bound

Let C be a ((n, k, 2t + 1))D non-degenerate code in a D-dimension Hilbert space. Then,∑t
s=0

(
n
s

)
(D2 − 1)s ≤ Dn−k. For the particular case of D = 2, it holds that

∑t
s=0

(
n
s

)
3s ≤ 2n−k.

The quantum analog of the singleton bound for classical error correction code (Lemma 11.2.1).
15Note that this means we also captures non-unitary errors.

66

http://theory.caltech.edu/~preskill/ph229/notes/chap7.pdf

Lemma 4.12.3: Quantum Singleton Bound

Let C be a ((n, k, d)) code. Then k ≤ n− 2(d− 1).

Xiao!Xiao: The proof for Lemma 4.12.3 is a good example for the application of the quantum Von
Neumann entropy.

The quantum analog of the Gilbert-Varshmov bound for classical error correction code (Lemma 11.2.1).
Lemma 4.12.4: Quantum Gilbert-Varshamov Bound

Assume n, k, and d satisfy the condition
∑d−1

s=0

(
n
s

)
(D2−1)s ≤ Dn−k. Then, there exits a [[n, k, d]]D

QECC on D-dimension Hilbert space.

4.13 Supplementary Readings for Quantum Computation and In-
formation

General Quantum Computing.

• The bible [NC11].

• The textbook by Phillip Kaye, Raymond Laflamme, and Michele Mosca [KLM06].

Quantum Information Theory.

• For quantum information theory, [Wil11] is a great reference. (It is published by Cambridge
University Press as [Wil17].).

• The Theory of Quantum Information by John Watrous.

• Quantum Entropies: the textbook by Tomamichel [Tom16].

• For quantum min, max, and conditional entropies: [KRS09].

• Quantum Leftover Hash Lemma: [RK05].

• A must-read paper for understanding entropy argument in cryptography: [BF10].

On QKD Protocols. Resources for the security proof of QKD protocols (and useful quantum
information-theory tools for cryptography):

• Renato Renner’s Ph.D. thesis [Ren08], where smooth min and max entropies are proposed.

• Marco Tomamichel’s Ph.D. thesis [Tom12].

• [TL17] and the references therein.

Quantum Error Correction and Stabilizer Formalism.

• Lecture notes by Steven M. Girvin [Gir23].

67

https://cs.uwaterloo.ca/~watrous/TQI/

• A short introduction by Daniel Gottesman [Got10].

• Daniel Gottesman’s PhD thesis (link)

• The paper [ABOEM17].

Quantum Complexity.

• [GHLS15] is a great introductory book for quantum Hamiltonian complexity.

• Interactive Proofs with Quantum Devices (by Thomas Vidick).

• The Complexity of Quantum States and Transformations (by Scott Aaronson)

• Quantum Proofs (By Thomas Vidick and John Watrous)

On Physics.

• The “derivation” of Shrödinger’s equation can be found at [Mar21].

Great Video Resources.

• Intro to Quantum Computing (by Henry Yuen)

• Quantum Complexity (by Henry Yuen)

• The quantum complexity course by Sevag Gharibian.

• The best lecture for BB84 QKE by Ramona Wolf.

• The 11th BIU Winter School on Cryptography

• Video course by Artur Ekert at https://www.arturekert.org/iqis.

• Daniel Gottesman has recorded lectures on both Quantum Information and Error-Correct
Codes&Fault-Tolerant Computation. Check his homepage.

68

https://thesis.library.caltech.edu/2900/
http://users.cms.caltech.edu/~vidick/teaching/fsmp/
https://arxiv.org/abs/1607.05256
https://arxiv.org/pdf/1610.01664.pdf
http://www.henryyuen.net/classes/spring2021/
http://www.henryyuen.net/classes/fall2020/
http://groups.uni-paderborn.de/fg-qi/courses/UPB_QCOMPLEXITY/2020/UPB_QCOMPLEXITY.html
https://www.youtube.com/playlist?list=PL7PbuDFCebIQjjgaiJfc6vW9gdvqcPto3
https://cyber.biu.ac.il/event/the-11th-biu-winter-school-on-cryptography/
https://www.arturekert.org/iqis
https://www2.perimeterinstitute.ca/personal/dgottesman/

Chapter 5
Probability Theory

5.1 The Second Nature
The following results are used so often that they almost become the second nature of cryptographers:

• Let A, B, and C be three events. Then,{∣∣Pr[A]− Pr[B]
∣∣ ≥ 2r

Pr[C] ≥ 1− r
⇒

∣∣Pr[A|C]− Pr[B|C]
∣∣ ≥ r

Averaging Argument. The following claim follows from a simply averaging argument. We will
dive into this type of argument in more detail in Section 5.4.

Lemma 5.1.1. Let A and B be two events. Let c be a constant. Assume that Pr[A] ≥ 1− δ and
Pr[B] = 1

c . It then follows that
Pr[A | B] ≥ 1− c · δ.

♢

5.2 The General Disjunction Rule of Events
Everyone is familiar with the following disjunction rule of two events:

Pr[A1 ∨A2] = Pr[A1] + Pr[A2]− Pr[A1 ∧A2],

which can be straightforwardly demonstrated via Venn diagram.
In the following, we show the (less-familiar) extension of the above rule to n events.

Pr[A1 ∨ . . . ∨An] =
n∑
k=1

(−1)k−1
∑

{i1,...,ik}
∈Ck,n

Pr[Ai1 ∧ . . . ∧Aik], (5.1)

where Ck,n is the set of all ordered k-uples i1 < . . . < ik of [n].
Equation (5.1) can be easily proved by induction. But the writing could be painful, thus

omitted. In the following we show the case for n = 3 to provide some intuition.

Pr[A1 ∨A2 ∨A3] =
3∑
i=1

Pr[Ai]−
(

Pr[A1 ∧A2] + Pr[A1 ∧A3] + Pr[A2 ∧A3]
)
+ Pr[A1 ∧A2 ∧A3]

69

5.3 Union Bound and the Probabilistic Method
Xiao!Xiao: Put the definition/derivation here...

An exemplary application of union bound and the probabilistic method is the proof of the
following lemma, which is an important step in obtaining the famous Nisan-Wigderson PRG.
Lemma 5.3.1: Overlapping Subsets [NW94]1

Let an (ℓ, k, d)-design be a set I = {I1, . . . , Im}, where each Ii is a size-k subset of {1, 2, . . . , ℓ}
such that any |Ii ∩ Ij | ≤ d for all i 6= j.
If ℓ ≥ 10k2/d, then there is an (ℓ, k, d)-design that achieves m = 2d/10 and can be constructed in
deterministic time 2O(ℓ).

Proof. On inputs ℓ, k, d with ℓ > 10k2/d, our algorithm A will construct an (ℓ, k, d)-design I with
2d/10 sets using the simple greedy strategy:

Start with I = ∅ and after constructing I = {I1, . . . , Im} for m < 2d/10, search all
subsets of [ℓ] and add to I the first k-sized set I satisfying the following condition:

∀j ∈ [m], |I ∩ Ij | ≤ d. (5.2)

Clearly, A runs in poly(m)2ℓ = 2O(ℓ) time and so we only need to prove it never gets stuck. In other
words, it suffices to show that if ℓ = 10n2/d and {I1, . . . , Im} is a collection of k-sized subsets of
[ℓ] for m < 2d/10, then there exists an k-sized subset I ⊆ [ℓ] satisfying Equation (5.2). This can
be shown by probability method. Namely, we do so by showing that if we pick I at random by
choosing independently every element x ∈ [ℓ] to be in I with probability 2k/ℓ.

Since the expected size of I is 2k, it follows from Chernoff bound that

Pr[|I| ≥ k] ≤ 0.9. (5.3)

Since the expected size of intersection I ∩ Ij is 2k2/ℓ < d/5 for all j ∈ [m], it follows again from
Chernoff bound that

∀j ∈ [m], Pr[|I ∩ Ij | ≥ d] ≤ 0.5 · 2−d/10.

Because m ≤ 2d/10, the above inequality together with union bound implies:

∀j ∈ [m], Pr[|I ∩ Ij | < d] ≥ 1− 0.5 · 2−d/10 · 2d/10 = 0.5. (5.4)

Inequality (5.3) and Inequality (5.4) implies that with probability at least 0.9 · 0.5 = 0.45, the set
I will simultaneously satisfy Equation (5.2) and have size at least k. Since we can always remove
elements from I without damaging Equation (5.2), this completes the proof. ■

Bonferroni’s Inequality The following inequality can be considered as the counterpart of the
union bound.
Lemma 5.3.2: Bonferroni’s Inequality

Pr[A1 ∧ . . . ∧An] ≥ Pr[A1] + . . .+ Pr[An]− (n− 1).

1This formalization and proof are taken from [AB09].

70

5.4 Averaging Argument
Consider the following simple fact: if the average of a set real numbers {ai}i∈[n] is some c, then
there must exist some ai ≥ c (or ai ≤ c). This fact with some of its variants turns out to be
very helpful in many cryptographic scenarios, especially in the security proof of protocols where
non-uniform argument is used.

Before we present the most crypto-friendly version, see an example for how powerful this kind
of argument can be (even) at its simplest form:

• Erdos argument for no-monochromatic-clique graph.

There are several interesting variants of this argument, see Appendix A.2.2 of [AB09]. In the
following, we show a popular one that always appears when a proof wants to make use of the
auxiliary (or random) tape of non-uniform Turing machines.
Lemma 5.4.1: Averaging Argument

If X ∈ [0, 1] and E[X] = µ, then ∀c < 1 the following holds:

Pr[X ≤ cµ] ≤ 1− µ
1− cµ

(5.5)

Remark 5.4.1. As one may already realized, the averaging argument shown in Lemma 5.4.1 has
a similar flavor of the famous Markov Inequality (Lemma 5.6.1). Indeed, both of them say that a
sampled random variable cannot differ too much from its expectation. Some papers refer to Markov
inequality as the “averaging argument”.

A Toy Example. An interesting application (of Lemma 5.4.1) that has some counter-intuitive
implication: suppose you took a lot of exams, each with the score range [1, 100]. If your average
score was 90, then in ≥ 1

2 fraction of these exams you scored ≥ 80.
The following corollary (of Lemma 5.4.1) is ubiquitous in the security proof of crypto protocols.

Corollary 5.4.1 (Averaging Argument). If a1, a2, . . . , an are numbers in the interval [0, 1] whose
average is ρ, then at least ρ

2 of the ai’s are at least as large as ρ
2 . ♢

5.4.1 Exemplary Applications of the Averaging argument

Applications in Non-Uniform Argument. We demonstrate the usage of Corollary 5.4.1 by the
following abstracted scenario. Consider a adversary Adv in some security reduction. Imagine that
we want to build a machine B such that if Adv does something specific (w.l.o.g., say “outputting
1”) with probability p∗ (e.g., breaks the security property we are proving), B can make use of Adv
to break some underlying assumptions with some probability polynomially-related to p∗. In this
procedure, B may (internally) run Adv up to some point and save the current state of Adv as st∗,
to which we usually refer as “freeze machine Adv at st∗” . Later, it may start Adv (directly) from
st∗ to finish the remaining steps, or to perform some specific operation (e.g., rewinding the steps
after st∗).

71

http://www.tricki.org/article/Averaging_arguments

A common task in this scenario is to estimate the probability that Adv outputs 1 when being
stated from st∗. For example, if rewinding is the concerned operation, this probability determines
how many rewindings (the expected running time) are necessary for Adv to output 1 (again).

According to our assumption, we have Pr[Adv = 1] = p∗. But this probability is taken over all
the randomness used by Adv, which might include the random tape of Adv, the distribution of the
input and so on. Since we now freeze Adv at st∗, the probability of outputting 1 is not p∗ anymore.
We actually target the following conditional probability

Pr[Adv = 1 | starting from st∗].

More formally, we should use S to denote the random variable that describe the possible status of
Adv up to the “freezing point”. We use Sup to denote the support of S . We are interested in the
case where S = st∗. Let us consider the following decomposition:

Pr[Adv = 1] =
∑

st∈Sup
Pr[Adv = 1 ∧ S = st]

=
∑

st∈Sup
Pr[Adv = 1 | S = st] · Pr[S = st].

The idea behind the proof of Corollary 5.4.1 tells us a useful fact that there are at least p∗/2 fraction
of Sup such that from Adv resuming from these states will output 1 with probability at least p∗/2.2
Using our notation, it means that there exists a subset Sup′ ⊂ Sup such that the following holds:

(i) |Sup′| ≥ p∗

2 |Sup|, and

(ii) ∀st ∈ Sup′, Pr[Adv = 1 | S = st] ≥ p∗

2 .
In the common setting, p∗ is usually noticeable. The above says that if B picks st uniformly

at random, then with noticeable probability, the remaining part of Adv will finish outputting 1 (or
satisfy some requirement) with noticeable probability. This usually suffices to finish the security
reduction.

For a concrete example of the above approach, see the proof of soundness for the famous BJY
protocol (a 4-round ZKAoK from any OWFs) [BJY97, Lemma 4.3].

Applications to “Truncated” Executions. In some scenarios, we need to do security reduction
with an expected polynomial time adversary. This could be potentially problematic as the cryp-
tographic assumptions are usually stated w.r.t. PPT adversaries. To address this problem, we can
truncate the target adversary when it goes beyond some pre-fixed polynomial running time, and
still hope to finish the reduction successfully with non-negligible probability.

?? contains a detailed discussion (with concrete examples) about how to use averaging argument
in such a “truncating” argument.

Applications in the Black-Box Separation Literature. Averaging argument is widely used in
the proof of black-box separation results. In these applications, it usually appears in the following
form (e.g., [HR04, CLMP12, Haj18]).

Let X and Y be random variables. Let EventX,Y be some event depend on X and Y . Assume
it is known that

Pr
X,Y

[EventX,Y] ≥ 1− ε. (5.6)

2Note that I mean to say that following the same proof technique used to prove Corollary 5.4.1, we can prove the
concerned fact. But this fact does not following immediately from Corollary 5.4.1 per se.

72

Then, the averaging argument3 is used to show that for c > 1

Pr
X

[
Pr
Y
[EventX,Y] ≥ 1− c · ε

]
≥ 1− 1

c
, (5.7)

and also,
Pr
X

[
Pr
Y
[EventX,Y] ≥ 1− 1

c

]
≥ 1− c · ε, (5.8)

This procedure is so common that authors usually omit the details. Here, I provide a detailed
derivation that may help a beginner to see the concrete math.

To do that formally, assume for contradiction that Inequality (5.7) does not hold. That is, there
are a δ < 1 − 1

c fraction of X such that PrY [EventX,Y | X] ≥ 1 − c · ε. Call this δ fraction of X
“good”. Then, we have

Pr
X,Y

[EventX,Y] = Pr
Y
[EventX,Y | X is good] · Pr

X
[X is good] + Pr

Y
[EventX,Y | X is bad] · Pr

X
[X is bad]

≤ 1 · δ + (1− c · ε) · (1− δ)
= 1− c · ε+ c · ε · δ
= 1 + c · (δ − 1)ε

< 1− ε (since δ < 1− 1/c).

This contradicts Inequality (5.6), thus finishing the proof.
If we replace the EventX,Y with its negation, we will get the following version of averaging

argument:

Pr
X,Y

[EventX,Y] ≤ ε ⇒


Pr
X

[
Pr
Y
[EventX,Y] ≤ c · ε

]
≥ 1− 1

c

Pr
X

[
Pr
Y
[EventX,Y] ≤

1

c

]
≥ 1− c · ε

. (5.9)

Another Proof. There is another way to derive Inequality (5.7) from Inequality (5.6), using Markov’s
inequality (Lemma 5.6.1). First, observe that

Pr
X,Y

[EventX,Y] = E
X

[
Pr
Y
[EventX,Y]

] (
and Pr

X,Y
[¬EventX,Y] = E

X

[
Pr
Y
[¬EventX,Y]

])
.

Thus, it follows from Inequality (5.6) that

E
X

[
Pr
Y
[¬EventX,Y]

]
≤ ε

⇒Pr
X

[
Pr
Y
[¬EventX,Y] ≥ c · ε

]
≤ 1

c
(by Markov’s Inequaltiy as in Lemma 5.6.1)

⇒Pr
X

[
Pr
Y
[¬EventX,Y] ≤ c · ε

]
≥ 1− 1

c

⇒Pr
X

[
Pr
Y
[EventX,Y] ≥ 1− c · ε

]
≥ 1− 1

c
,

where the last inequality is exactly Inequality (5.7).

73

5.4.2 Another Example: Hardness Amplification from Weak OWFs to OWFs
Xiao!Xiao: Another good exemplary application of the averaging argument is the amplification from weak

OWFs to (ordinary) OWFs [Yao82]. This lecture note by Rafael Pass contains a good presentation
of it.

5.5 Berry-Esseen Theorem
Xiao!Xiao: Check these resources:

• Ryan O’donnell’s lecture

• This Wikipedia page.

Recently, Tomaszewski’s Conjecture was resolved [KK20]. Berry-Esseen inequality plays an
important role in the final proof.

5.6 Concentration Bounds

5.6.1 Markov Inequality
The common form of Markov Inequality is shown below:
Lemma 5.6.1: Markov Inequality

If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at
most the expectation of X divided by a, i.e.,

Pr[X ≥ a] ≤ E(x)

a
.

Let a = c · E(X) (where c > 0); then, we can rewrite the previous inequality as:

Pr[X ≥ c · E(X)] ≤ 1

c
.

The following version is Markov inequality is useful if one want to lower-bound the value of a
random variable. It can be proved by applying Markov’s inequality (Lemma 5.6.1) to X = B − Y .
Note that X is a non-negative random variable as Y < B.
Corollary 5.6.2: The Reverse Markov Inequality

Let Y be a random variable that is never larger than B ∈ R. Then, for all a < B,

Pr[Y ≤ a] ≤ B − E(Y)

B − a
.

The following is a widely used argument in cryptography. It is so standard that many authors
refer to it without a proof. In [DGH+19], the authors formalize it under the name “Markov
Inequality for Advantages”4. The reason why it is called “Markov Inequality” remains mysterious

3As mentioned in Remark 5.4.1, “averaging argument” in this context usually refers to Markov Inequality
4This is the first place where I saw such a formalism But it is possible that it already appeared somewhere else.

74

https://www.cs.cornell.edu/courses/cs687/2006fa/lectures/lecture4.pdf
https://www.youtube.com/watch?v=Ig5TuZauhW4&list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&index=13
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem

to me. Maybe it is because the proof and the intuition behind this bound goes in the same sense
as the standard Markov Inequality?

Theorem 5.6.1 (Markov Inequality for Advantages). Let A(Z) and B(Z) be two random variables
depending on a random variable Z and potentially additional random choices. Assume that∣∣Pr

Z
[A(Z) = 1]− Pr

Z
[B(Z) = 1]

∣∣ ≥ ε ≥ 0.

Then
Pr
Z

[∣∣Pr[A(Z) = 1]− Pr[B(Z) = 1]
∣∣ ≥ ε

2

]
≥ ε

2
.

♢

Proof. The idea is to condition the event on
∣∣Pr[A(Z) = 1]− Pr[B(Z) = 1]

∣∣ ≥ ε
2 . Let

a = Pr
Z

[∣∣Pr[A(Z) = 1]− Pr[B(Z) = 1]
∣∣ ≥ ε

2

]
.

We have ε ≤ a × 1 + (1 − a) × ε
2 . Since 0 ≤ 1 − a ≤ 1, we obtain ε ≤ a + ε

2 . The inequality now
follows. ■

5.6.2 Chebyshev Inequality
Xiao!Xiao: Chebyshev’s inequality played an important role in the hidden-bits model NIZK setting, e.g.

[FLS90, GIK+23].

5.6.3 Chernoff Bound
Xiao!Xiao: Wikipedia has an exhaustive explanation for this topic.

The lecture of Prof. O’donnell also gives a great presentation for Chernoff Bounds

Theorem 5.6.2 (Chernoff Bound). Let Xi be i.i.d. random variables such that 0 ≤ Xi ≤ 1. Let
µ = E[

∑
iX]. For and ε > 0, we have

• Pr[X ≤ (1− δ) · µ] ≤ exp
(
− δ2µ

2

)
• Pr[X ≥ (1 + δ) · µ] ≤ exp

(
− δ2µ

2+δ

)
♢

Interestingly, if we know that L ≤ µ ≤ H, the following bounds hold:
• Pr[X ≤ (1− δ) · L] ≤ exp

(
− δ2L

2

)
• Pr[X ≥ (1 + δ) ·H] ≤ exp

(
− δ2H

2+δ

)
The following corollary of Chernoff bound is taken from Prof. O’donnell’s notes for his lecture

on Chernoff Bound. The poof was left as an exercise.

Lemma 5.6.1 (Sampling Lemma). Let µ be the unknown mean for a random variable 0 ≤ X ≤ 1.
Let x1, . . . , xn be n independent samples of X. Let µ̂ be the empirical mean of xi’s, i.e. µ̂ :=
x1+···+xn

n . Then for any 0 < ε, δ < 1 such that n ≥ 3 ln(1/δ)
ε2

, the following holds:

Pr
[
|µ̂− µ| ≤ ε

]
≥ 1− δ.

75

https://en.wikipedia.org/wiki/Chernoff_bound
https://www.youtube.com/watch?v=zz4C-xECIp4&list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&index=16
https://www.youtube.com/watch?v=zz4C-xECIp4&list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&index=16

♢
Xiao!Theorem 5.6.3 (Chernoff Bound). Xiao: Put the general form here ♢

Xiao!Xiao:

Theorem 5.6.4 (Chernoff Bound (Upper Tail)). Let X =
∑n

i=1Xi, where Xi = 1 with probability
pi and Xi = 0 with probability 1−pi, and all Xi’s are independent. Let µ = E[X] =

∑n
i=1 pi. Then

the following holds for any 0 < δ < 1:

Pr[X ≥ (1 + δ) · µ] ≤ exp
(
− δ2µ

2 + δ

)
♢

Probably the most widely used form of Chernoff bound is the following one:

Corollary 5.6.1. Let X1, . . . , Xn be independent variables with 0 ≤ Xi ≤ 1 for all 1 ≤ i ≤ n,
denote µ = E[

∑n
i=1Xi

n]. Then, for any ε > 0,

Pr
[∣∣∑n

i=1Xi

n
− µ

∣∣ ≥ ε] ≤ 2−ε
2·n (5.10)

♢

The take-away from Chernoff bound is very simple: The empirical mean of a bunch of inde-
pendent random variables is approaching the expectation (of the mean) in an exponentially fast
manner.

5.6.4 An Exemplary Application of Concentrations Bounds: the Goldreich-
Levin Theorem

Xiao!Xiao: the proof of Goldreich-Levin theorem serves as an beautiful example where Markov’s in-
equatliy, Chebyshev’s inequality, and Chernoff bound are used. So, now is a prefect time to
present this famous theorem. Use the version from Trevisan’s lecture notes.

My favorite explanation of Goldreich-Levin theorem is Bellare’s lecture notes.

5.6.5 Hoeffding Inequality
Hoeffding’s Inequality can be regarded as the most general (at least for TCS applications) con-
centration bound for independent random variables. In particular, Chernoff’s inqaulity can be
recovered as a special case of Hoeffding’s inequality. A clean derivation of Hoeffding’s inequality
can be found in this lecture notes.

Theorem 5.6.5 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be independent variables with
bi ≤ Xi ≤ ai for all 1 ≤ i ≤ n, denote µ = E[

∑n
i=1Xi

n]. Then, for any ε > 0, we have:

Pr
[∣∣∑n

i=1Xi

n
− µ

∣∣ ≥ ε] ≤ 2 · e
− 2·ε2·n2∑n

i=1
(bi−ai)

2 (5.11)

76

https://cs.stanford.edu/people/trevisan/pacc/lecture08.pdf
https://cseweb.ucsd.edu/~mihir/papers/gl.pdf
https://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/03_hoeffding.pdf

The following single-side form also holds:

Pr
[∑n

i=1Xi

n
− µ ≥ ε

]
≤ e
− 2·ε2·n2∑n

i=1
(bi−ai)

2 (5.12)

♢
Xiao!Xiao: Include the version from [BF10, Section 2].

5.7 Stochastic Process

5.7.1 Doob’s Martingale
Xiao!Xiao: Doob’s Martingale. A good source can be found at [GLM23].

5.8 Coupon-Collection Problems
Lemma 5.8.1. Suppose that there are m different types of coupons, and each time one obtains a
coupon of type i (1 ≤ i ≤ m) with probability 1

n , where n ≥ m is a parameter. Note that with
probability 1 − m

n , one does not obtain any coupon (or obtains an “empty coupon”). Then the
expected number of coupons one need amass before obtaining k (1 ≤ k ≤ m) different types of
non-empty coupons is

n · (Hm −Hm−k) (5.13)

where Ht := 1 + 1
2 + . . .+ 1

t is the t-th harmonic number for t ∈ N. ♢

Proof. Let X(k) denote the number of coupons collected before k different types of coupons is
attained. We need to compute E[X(k)]. we define Xj (j = 0, 1, ..., k−1) to be the random variable
representing the number of additional coupons that need be obtained after j distinct types have
been collected in order to obtain another distinct type, and we note that

X(k) = X0 +X1 + . . .+Xk−1.

When j distinct types of coupons have already been collected, a new coupon obtained will be of a
distinct type with probability (m− j)/n. Therefore

Pr[Xj = k] =
m− j
n

(n−m+ j

n

)k−1
k ≥ 1

or, in other words, Xj is a geometric random variable with parameter (m− j)/n. Hence, E[Xj] =
n

m−j implying that

E[X(k)] =
n

m− k + 1
+

n

m− k + 2
+ . . .+

n

m− 1
+
n

m

= n(Hm −Hm−k)

where Ht is the t-th harmonic number for t ∈ N. ■
Xiao!Xiao: We can use the above lemma in the following way: in our setting, n is the total nubmer of

challenges, m is the set of “good” challenges (i.e. the prover will answer), k is the number of distinct
challenges needed to extract a valid witness. If k is a polynomial and m is a super-polynomial on

77

security parameter λ, we can assume that m − k + 1 ≥ m/2. Then the expected running time of
the knowledge extractor can be bounded as

E[X(k)] =
n

m− k + 1
+

n

m− k + 2
+ . . .+

n

m− 1
+
n

m

≤ n k

m− k + 1
= k · n

m− k + 1
≤ k · n

2m
= 2k

n

m
= poly(λ)

Since both k and n
m are polynomials of λ, the expected running time E[X(k)] is also upper-bounded

by a polynomial of λ.

78

Chapter 6
Entropies

6.1 Divergence
Xiao!Xiao: talk about Kullback–Leibler divergence (also called relative entropy). check this video by

Wilde.

6.2 Shanon Entropy and Friends
Xiao!Xiao:

• First, H(X) = −
∑

x pX(x) log
(
pX(x)

)
.

• Joint-Entropy. This is just Shanon’s entropy for a joint distribution:

H(X,Y) = −
∑
x,y

pX,Y (x, y) log
(
pX,Y (x, y)

)
.

• Conditional Entropy. Deriving conditional entropy H(X|Y). First, consider the entropy
conditioned on each instantiation of Y : H(X|Y = y) = −

∑
x pX|Y (x|y) log

(
pX|Y (x|y)

)
.

Then, the conditional entropy can be defined as:

H(X|Y) =
∑
y

pY (y)
(
H(X|Y = y)

)
= −

∑
x,y

pX,Y (x, y) log
(
pX|Y (x|y)

)
.

• Mutual Information. I(X : Y) = H(X) − H(X|Y) = H(Y) − H(Y |X). Intuitively, it
represents the information about X you can infer from Y .
This quantities is crucial in Shanon’s theorem: The capacity of a classical channel N is given
by C(N) = maxpX(x) I(X : Y).

• Basic properties:

– Conditioning does not increase entropy: H(X|Y) ≤ H(X).
– H(X,Y) = H(X) +H(Y |X) = H(Y) +H(X|Y). (Just follows by definition.)

6.3 Quantum Entropies
Xiao!Xiao: To do...

6.3.1 Conditional Max and Min Entropies
Xiao!Xiao: See [Ren08, Chapter 3].
Xiao!

79

https://www.youtube.com/watch?v=3gloUVUzgLc&t=1601s

Xiao: There seems to exist different ways to define conditional smooth min-entropy. The most
easy-to-understand one appears in [VV12, Section 2]. But that formalism is different from, e.g.,
[Ren08, MLDS+13, MS16]. However, it seems that these difference is only cosmetic—all of them
are meant to enable the extraction of randomness in the presence of quantum adversaries; In this
sense. they functions equivalently.

6.3.2 Entropic Uncertainty Relation
Xiao!Xiao: To do. see [Wol21, Chapter 3.3]

6.3.3 Rényi’s Family of Entropies
The following definition is taken from [MS16, Section 3.2], which is in turn taken from [MLDS+13].
Definition 6.3.1: Quantum Rényi Divergence and Entropy

Let ρ be a density matrix on Cn. Let σ be a positive semi-definite matrix on Cn whose supporta

contains the support of ρ. Let α > 1 be a real number. Then,

dα(ρ‖σ) := Tr
[(
σ

1−α
2α ρσ

1−α
2α
)α] 1

α−1 .

More generally, for anyb positive semi-definite matrix ρ′ whose support is contained in the support
σ, let

dα(ρ
′‖σ) := Tr

[
1

Tr[ρ′]
(
σ

1−α
2α ρ′σ

1−α
2α
)α] 1

α−1

.

Then, the Rényi divergence is defined as Dα(ρ
′‖σ) := log dα(ρ′‖σ).

For a density operator ρ, the (unconditional) Rényi entropy is defined by

Hα(ρ) := Dα(ρ‖I) = −
1

α− 1
log Tr[ρα].

aFor linear operators, “support” refers to the space which is orthogonal to its kernel (equivalently, the space
spanned by the columns of the matrix).

bI.e., those that are not necessarily trace-1 (in other words, density operators).

80

Chapter 7
Number Theory

7.1 Prime Number Distribution
Xiao!Xiao:

• A useful link

• Gauss’s bound

• Chebyshev bound

• Bertrand’s postulate

• Talk about the relation between prime number distribution and Reimann Hypothesis

7.2 Euler’s Totient Function
Xiao!Xiao: Euler’s theorem

(Note that if N = p · q, where p and q are two primes, then once we know ϕ(N), it is easy to factor N . To do
that,

1. Note that

ϕ(N) = (p− 1)(q − 1) = N − (p+ q) + 1

⇒p+ q = N + 1− ϕ(N) (7.1)

2. p and q can be easily solved from Equ. 7.1 and N = p · q.

In summary, computing ϕ(N) is equivalent to factorizing N when N is the product of two primes. (The other
direction is trivial, i.e. it is easy to compute ϕ(N) given the factorization of N .)

)
Xiao!Xiao: repeated squaring
Xiao!Xiao: Fermat’s little theorem
Xiao!Xiao: Chinese remainder theorem

7.3 Quadratic Residues
Lemma 7.3.1 (text). Let p > 2 be prime. Every quadratic residue in Z∗p has exactly two square
roots. ♢

Th Quadratic Residuosity (QR) assumption was originally formalized in [GM84], to construct
the well-known Goldwasser-Micali PKE scheme. Another very simple and interesting application
is given by Kushilevitz and Ostrovsky [KO97], where they build the first computational Private
Information Retrieval protocol in the single database setting with sub-linear communication com-
plexity. More specifically, they achieve communication complexity O(nε) for any ε > 0, where n is
the size of the database.

Xiao!

81

https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Riemann_hypothesis

Xiao: There are two constructions in [KO97]. They start with the first construction which
achieves communication complexity O(n0.5+ε). Based on the first construction, they build their
final scheme which achieves communication complexity O(nε). But the first construction is very
simple. It can be presented here as a good demonstration of the power of QR assumption.

7.4 Composite Residues
This assumption gives the well-know Paillier [Pai99] and Dåmgard-Jurik [DJ01] cryptosystems.
This assumption relies on the group Z∗N2 , where N is the product of two equal-length primes. The
following theorem summarize important properties of Z∗N2 to our interest.

Theorem 7.4.1. Let N = pq, where p, q are distinct odd primes of equal length. Then:

1. gcd(N,ϕ(N)) = 1.

2. For any integer a ≥ 0, we have (1 +N)a = (1 + aN) mod N2.
As a consequence, the order of (1 +N) in Z∗N2 is N .

3. ZN × Z∗N is isomorphic to Z∗N2 , with isomorphism f : ZN × Z∗N → Z∗N2 given by

f(a, b) = (1 +N)a · bN mod N2

where the operation in ZN × Z∗N is defined as (a1, b1) · (a2, b2) = (a1 + a2, b1 · b2).

♢

Define the subset of N -th residues in Z∗N2 as Res(N2), using Theorem 7.4.1, we can show that
very element in ResN2 is of the form (a, b) if written in the isomorphic group ZN ×Z∗N . Moreover,
this characterization is sufficient. We summarize this in the following corollary.

Corollary 7.4.1. Let N = pq, where p, q are distinct odd primes of equal length. Denote the set
of N -th residues modulo N2 by Res(N2). Then:

Res(N2) < Z∗N2 and Res(N2) ∼= {(0, b) | b ∈ Z∗N} < ZN × Z∗N

♢

We are now ready to present the decisional composite residuosity (DCR) assumption. Intu-
itively, this assumption conjecctures that it is infeasible to distinguish a uniform element of Z∗N2

from a uniform element of Res(N2). Formally,

Assumption 7.4.1 (DCR Assumption). let GenModulus be a polynomial-time algorithm that, on
input 1λ, outputs (N, p, q) where N = pq, and p and q are λ-bit primes. The DCR assumption is
that there exist a GenModulus algorithm such that for any PPT adversary Adv, the following holds:∣∣Pr[Adv(N, a) = 1]− Pr[Adv(N, b) = 1]

∣∣ ≤ negl(λ)

where a $←− Res(N2) and b
$←− Z∗N2 .

82

7.5 Chinese Remainder Theorem
Xiao!Xiao: Discuss the Chinese Remainder Theorem

83

Chapter 8
Hash Functions
useful links for this chapter:

• CMU Algorithms in the Real World course
Xiao!Xiao: Here (or may be at the end of this chapter, discuss about the difference and relation

between IT-secure hashing and cryptographic hashing.)
The following paragraph is quoted from [HL18], which gives many examples for the application

of cryptographic hashing:

• Cryptographically secure hash functions are a fundamental building block in cryptography. Some
of their most ubiquitous applications include the construction of digital signature schemes [NY89],
efficient CCA-secure encryption [BR93], succinct delegation of computation [Kil94], and removing
interaction from protocols [FS87]. In their most general form, hash functions can be modeled as
“random oracles” [BR93], in which case it is heuristically assumed that an explicitly described
hash function H (possibly sampled at random from a family) behaves like a random function, as
far as a computationally bounded adversary can tell.

8.1 Collision Resistant Hash Family
Collision Resistant Hash Functions, usually denoted as CRHF, was first formalized explicitly by
Damgård [Dam88].

Xiao!Xiao: collision resistant hash families

Definition 8.1.1 (Collision Resistant Hash Families). (to be done ...)
♢

8.1.1 Merkle Hashing Trees and the Extraction Lemma
The following formalism of Merkle hashing trees is taken from [HHPS11].

Denote by MTh,n(X) the binary Merkle tree over string X using n-bit leaves and the hash
function h : {0, 1}2n ← {0, 1}n. For each node k in the tree n ∈ MTh,n(X), we denote by vk the
value associated with that node. That is, the value of a leaf is the corresponding block of X, and
the value of an intermediate node n ∈ MTh,n(X) is the hash vk = h(vℓ‖vr) where vℓ, vr are the
values for the left and right child of k, respectively. Xiao: (If one of the children of a node is

Xiao!missing from the tree then we consider its value to be the empty string.)
For a leaf node x ∈MTh,n(X), the sibling path of x consists of the value vx and also the values

of all the siblings of nodes on the path from x to the root. Given the index of a leaf x ∈MTh,n(X)
and a sibling path for x, we can compute the values of all the leaves on the x-to-root path itself in
a bottom-up fashion by starting from the two leaves and then repeatedly computing the value of a
parent as the hash of the two children values.

We say that an alleged sibling path P = (vx, vk0 , vk1 , . . . , vki) is valid with respect to MTh,n(X)
if i is indeed the height of the tree and the root value as computed on the sibling path agrees with

84

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesF15/hashing.pdf

the root value of MTh,n(X). Note that in order to verify that a given alleged sibling path is valid,
it is sufficient to know the number of leaves and the root value of MTh,n(X). We also note that
any two different valid sibling paths with respect to the same Merkle tree imply in particular a
collision in the hash function.

Merkle Tree Proof Protocol and an Extraction Lemma. Merkle trees play an important
role in interactive arguments (i.e. computationally sound proofs). It can be used in the scenario
where an PPT prover P wants to hash a long string and later proves to a verifier V that the hashing
is honestly done w.r.t. some preimage string, without disclosing the string in full. We present this
protocol (due to [Kil92]) in Protocol 8.1.1.
Protocol 8.1.1: Merkle Tree Hash-and-Prove

Let H be a collision-resistant hash family. The protocol where the prover hash-and-proves w.r.t.
a string X proceeds in the following way:

1. The verifier V samples a function h
$←− H and sends it to the prover.

2. The prover P builds Merkle tree MTh,n(X) using h received from V . It then sends the root
value v and the number of leaves s to V .

3. V samples uniformly at random u distinct numbers (p1, . . . , pu) ∈ [s]u, indicating the leaves
it wants to verify. V sends these values to S.

4. The prover replies with these leaves specified by (p1, . . . , pu) and with a sibling path for each
one of them, and the verifier accepts if all these sibling paths are valid.

The soundness of Protocol 8.1.1 is captured by the following lemma, which basically says that
any PPT prover P ∗ that manages to convince the verifier with good probability must know (in the
sense of argument of knowledge) the preimage string.
Lemma 8.1.2: Merkle Tree Extraction [HHPS11]

There exists a black-box extractor K with oracle access to a Merkle-tree prover that has the
following properties:

• For every prover P and v ∈ {0, 1}∗, s, u ∈ N, and δ ∈ [0, 1], KP (v, s, u, δ) makes at most
u2s(log(s) + 1)/δ calls to its prover oracle P ;

• Fix any hash function h and input string X with s leaves of n-bits each, and let v be the root
value of MTh,n(X). Also fix some u ∈ N and a prover’s remaining strategy P ∗ = P ∗(h,X, u)
for Step 3 and Step 4 (that may depend on h,X and u). Then if P ∗ has probability at least
(1 − α)u + δ of convincing the verifier in the Merkle-tree protocol MTPh(v, s, u) (for some
α, δ ∈ (0, 1]), then with probability at least 1/4 (over its internal randomness) the extractor
KP ∗

(v, s, u, δ) outputs values for at least a (1−α)-fraction of the leaves of the tree, together
with valid sibling paths for all these leaves.

Note that the proof of Lemma 8.1.2 does not rely on collision resistance of the hash function, it
is merely a information-theoretical result. But it is usually used in conjunction with the collision-
resistance property of hash functions to establish cryptographic results such as computational
soundness or argument of knowledge property.

85

8.2 Universal One-way Hash Family
Another useful cryptographic (thus based on hardness assumptions) hashing is the universal one-
way hashing. It was proposed in [NY89]. Xiao: More discussion and applications can be found

Xiao!there.. Roughly speaking, the definition starts with Adv picking a input x1 before it learns the
function. Then we sample a function from the family and give it to Adv. The goal of Adv is to find
a second input x2 which shares the same image as that of x1, under the sampled hash function.

Xiao!Definition 8.2.1 (Universal One-Way Hash Family). Xiao: UOWHF
♢

8.3 Universal Hash Family
This notion of universal hashing, which bounds the collision probability of a hash function in a
statistical sense, dates back to [CW79, WC81].
Definition 8.3.1: Universal Hash Family

A family H = {hk}k of hash functions from domain D to range R is universal if ∀x1 6= x2 ∈ D,

Pr[hk
$←− H : hk(x1) = hk(x2)] ≤

1

|R|
(8.1)

Such families exist if |R| is a power of two (see [CW79]). Moreover, there exist universal hash
families which take strings of length n as input and contain 2O(n) hash functions; therefore it
takes O(n) bits to specify a hash function from such a family ([WC81]). Thus, when discussing
communication of hash functions, we can assume that both the sender and the recipient are aware
of the family from which a hash function has been chosen, and that the transmitted data consists
of O(n) bits used to specify the hash function from the known family.

A simple example of universal hash family from D = {0, 1}k to R = {0, 1}n is

hA(x) = A · x

where A $←− {0, 1}n·k is interpreted as a n × k matrix and x is interpreted as a k × 1 vector. The
calculations are done modulo 2.

8.4 Pair-wise Independent Hash Family
Definition 8.4.1 (Pair-wise Independent Hash Family). A family of hash functions H is pairwise
independent if ∀x1 6= x2 ∈ D and ∀y1, y2 ∈ R,

Pr[hk
$←− H : hk(x1) = y1 ∧ hk(x2) = y2] =

1

|R|2
(8.2)

♢

Note that in equation (8.1) for universal hash family, the probability is bounded by “≤”. But in
the equation (8.2), the symbol is “=”. Actually, some authors also use “≤” when defining pair-wise
hash family. It does not matter that much since, in applications, it usually suffices the purpose

86

once the collision probability is 1
|R| . I guess the tradition of using “=” is the following: the concept

of pair-wise independent hashing is analogous to the concept of independence in probability theory,
i.e. Pr[A ∧B] = Pr[A] · Pr[B], where “=” symbol is used.

Xiao!Xiao: I haven’t checked whether there exist an construction that achieves probability strictly
smaller than 1

|R| Xiao!
Xiao: Give an exmple of pair-wise independent hashing. e.g. ha,b(x) = ax+ b
Pair-wise independence can be generalized to the following concept of k-wise independence.

Definition 8.4.1: k-wise Independent Hash Families

A family of hash functionsH = {hi}i is k-wise independent if ∀x1 6= . . . 6= xk ∈ D and ∀y1, . . . , yk ∈
R, it holds that

Pr[hk
$←− H : hi(x1) = y1 ∧ . . . ∧ hi(xk) = yk] =

1

|R|k
(8.3)

Here are some obvious facts about k-wise independent hash family

Fact 8.4.1. Suppose H is a k-wise independent hash family for k ≥ 2. Then

1. H is also (k − 1)-wise independent.

2. For any x ∈ D and y ∈ R, Pr[h $←− H : hi(x) = y] = 1
|R| .

3. H is universal.
Xiao!Xiao: Mention that [WC81] gives q-wise independent hash function for any q.

Remark 8.4.1 (On the ambiguous usage of “2-universal”). Usually, k-wise independent hash family
is also called “k-universal” hash family [WC81], and the one given in Definition 8.3.1 is called
“universal”. But there are a few authors referring to Definition 8.3.1 as “2-universal”, namely
“universal” and “2-universal” are simply different names for the same property to them. To
make the situation even more confusing, some researchers refer to Definition 8.3.1 as “weakly
2-universal” and they refer to “pair-wise independent” as “strongly 2-universal”. And when they
say “2-universal”, they by default mean “weakly 2-universal”, i.e. Definition 8.3.1. One of such
authors is Vadhan [Vad12].

8.5 Bloom Filter
Xiao!Xiao: discuss Bloom filter here

87

Chapter 9
Pseudorandomness

9.1 Leftover Hash Lemma
In this section, we play with one of the most important lemma – Leftover Hash Lemma (LHL).
Introduced first in [ILL89], it has since found numerous applications in the realms of complexity
theory/quantum computing/(randomized) algorithm/information theory/cryptography. To give a
few examples from cryptography, LHL was used to build Leakage-Resilient Encryption [HLWW13],
Deterministic Encryption [BFO08], Fully Homomorphic Encryption [Gen09] and Program Obfus-
cation [BLMZ18] etc.

Roughly, LHL says that a universal hash function constitutes a good randomness extractor,
“smoothing out” an input distribution to nearly uniform on its range, provided that the former
has sufficient min-entropy. LHL can be generalized to the average conditional min-entropy setting
[DORS03].

Definition 9.1.1 (Statistical Distance). Let X and Y be two random variables with range U .
Then the statistical distance between X and Y is defined as

∆(X,Y) =
1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣ (9.1)

For ε ≥ 0, we also define the notion of two distributions being ε-close:

X ≈ε Y ⇔ ∆(X,Y) ≤ ε.

♢

Definition 9.1.2 (Min-Entropy). The min-entropy H∞(X) of a random variable X is defined as

H∞(X) = − log
(

max
x

{
Pr[X = x]

})
= min

x

{
− log

(
Pr[X = x]

)}
. (9.2)

If H∞(X) ≥ k, we call X a k-source.
♢

Lemma 9.1.1 (Leftover Hash Lemma [ILL89]). Let H = {hi}i∈I be a universal hash family1

I × D → R with |D| = 2n |R| = 2ℓ for some n, ℓ > 0. Let Ext(x, i) = hi(x). For any random
variable X on support D, the following holds:

∆
((

Ext(X,UI), UI
)
,
(
UR, UI

))
≤ 2−

(
H∞(X)−ℓ

2
+1
)

(9.3)

1For the definition of universal hash family, refer to Def. 8.3.1.

88

or equivalently (but easier to interpret),

ℓ ≤ H∞(X)− c ⇒ ∆
((

Ext(X,UI), UI
)
,
(
UR, UI

))
≤ 2−(

c
2
+1) (9.4)

where UI and UR are uniform distributions on I and R respectively.
In particular, to achieve statistical distance ε, we need to set

ℓ ≤ H∞(X)− 2 log
(1
ε

)
+ 2

♢

Proof. A simple but elegant proof is given in Reyzin’s lecture notes. ■

Remark 9.1.1. It seems different people formalize LHL in different way. Reyzin’s version (link)
assumes universal hashing, but Rubinfiel’s version (link) assumes 2-universal hashing. Also, [PW08]
also assumes pairwise independent hash function. Xiao: Is it true that if we assume pairwise

Xiao!indenpedent hash function, then we will only need ℓ ≤ H∞(x)− 2 log
(
1
ε

)
?

How to Explain LHL to a Kid. Typically, we use hash functions for compression. Smaller range
of a hash family (thus more compression achieved) means more information loss on the input. LHL
takes advantage of this property to build randomness extractors (see Section 9.2) from universal
hash families in the following way: even if the input distribution has low entropy, by hashing it with
a uniformly chosen member from a universal hash family with proper compression rate, we can
always “smooth” it to an (almost) uniform output. Parametrically, for an input with min-entropy
k, if we compress it to c bits shorter than k, i.e. the output has length m = k − c, the joint
distribution of the output and the hash key will (12)

c
2
+1-close to uniform distribution. Thus, the

statical distance is exponentially small on the amount compressed below the min-entropy.
Xiao!Xiao: Also, talk about the average-min entropy and the extended LHL. Check [BFO08], Reyzin’s

lecture notes and Yu Yu’s lecture notes.

Definition 9.1.3 (Conditional Min-Entropy and Average Min-Entropy). Let A, B be random
variables. The conditional min-entropy H∞(A |B = b) is defined as

H∞(A |B = b) = − log
(

max
a

{
Pr[A = a |B = b]

})
= min

a

{
− log

(
Pr[X = a |B = b]

)}
. (9.5)

The average min-entropy H̃∞(A |B) is defined as

H̃∞(A |B) = − log
(
EB
[

max
a
{Pr[A = a |B]}

])
= − log

(
EB
[
2−H∞(A |B=b)

])
. (9.6)

♢

The following is a very important lemma that characterize the relations among min-entropy,
conditional min-entropy and average min-entropy.

Lemma 9.1.2 (Relations among Entropies [DORS03, DRS04]). Let A, B, C be random variables.
Then

89

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
https://people.csail.mit.edu/ronitt/COURSE/S08/drafts/22.pdf
https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
http://yuyu.hk/files/ho2.pdf

(a) For any δ > 0, the following holds with probability (over the choice of b) at least (1− δ):

H∞(A |B = b) ≥ H̃∞(A |B)− log
(
1

δ

)
(9.7)

(b) If B has at most 2λ possible values, then

H̃∞
(
A | (B,C)

)
≥ H̃∞

(
(A,B) | C

)
− λ ≥ H̃∞(A | C)− λ. (9.8)

In particular,
H̃∞(A|B) ≥ H∞

(
(A,B)

)
− λ ≥ H∞(A)− λ. (9.9)

♢

Lemma 9.1.3 (Generalized LHL [DORS03, DRS04]). Let H = {hi}i∈I be a universal hash family2

I × D → R with |D| = 2n |R| = 2ℓ for some n, ℓ > 0. Let Ext(x, i) = hi(x). For any random
variable X on support D and Y , the following holds:

∆
((

Ext(X,UI), Y, UI
)
,
(
UR, Y, UI

))
≤ 2−

(
H̃∞(X | Y)−ℓ

2
+1
)

(9.10)

or equivalently (but easier to interpret),

ℓ ≤ H̃∞(X | Y)− c ⇒ ∆
((

Ext(X,UI), Y, UI
)
,
(
UR, Y, UI

))
≤ 2−(

c
2
+1) (9.11)

where UI and UR are uniform distributions on I and R respectively.
In particular, to achieve statistical distance ε, we need to set

ℓ ≤ H̃∞(X | Y)− 2 log
(1
ε

)
+ 2

♢

9.2 Randomness Extractors
Definition 9.2.1 (Randomness Extractor [NZ96]). Let the seed Ur be uniformly distributed on
{0, 1}r. We say that a function Ext : {0, 1}n × {0, 1}r → {0, 1}ℓ is a (n,m, ℓ, ε)-strong extractor if,
for all random variable X on {0, 1}n with H∞(X) ≥ m, the following holds:

∆
((

Ext(X,Ur), Ur
)
,
(
Uℓ, Ur

))
≤ ε

♢

Remark 9.2.1 (Strong vs. Standard Extractor). Note that the extractor defined here is called
strong extractor. The “standard” extractor only requires that Ext(X,Ur) is close to uniform. The
above version is called “strong” as it additionally requires the Ud part to be public. Usually, the
strong version here is more widely used in cryptography.

2For the definition of universal hash family, refer to Definition 8.3.1.

90

Definition 9.2.2 (Average-Case Extractor [DORS03, DRS04]). Let the seed Ur be uniformly dis-
tributed on {0, 1}r. We say that a function Ext : {0, 1}n × {0, 1}r → {0, 1}ℓ is an average-case
(n,m, ℓ, ε)-strong extractor if, for all pairs of random variables (X,Y) such that X has support
{0, 1}n and H̃∞(X | Y) ≥ m , the following holds:

∆
((

Ext(X,Ur), Y, Ur
)
,
(
Uℓ, Y, Ur

))
≤ ε

♢

Theorem 9.2.1 (Worst-Case to Average-Case Extractors [DORS03, DRS04]). For any δ > 0, if
Ext is a (n,m− log

(
1
δ

)
, ℓ, ε)-strong extractor, then Ext is also an average-case (n,m, ℓ, ε+ δ)-strong

extractor. ♢

Proof. The proof trivially follows from Lemma 9.1.2-(a). ■

Remark 9.2.2 (Interpreting LHL in term of Extractors). By simple calculations on the parameters,
one can interpret LHL in the following way:

• LHL says that universal hash families are (n,m, ℓ, ε)-strong randomness extractors whenever
ℓ ≤ m− 2 log

(
1
ε

)
+ 2.

• Generalized LHL says that universal hash families are average-case (n,m, ℓ, ε)-strong ran-
domness extractors whenever ℓ ≤ m− 2 log

(
1
ε

)
+ 2.

9.3 Expander Graphs
Xiao!Xiao: add expander graphs here

91

Chapter 10
Lattices
Many parts of this Chapter is taken from the marvelous survey of Peikert [Pei15]. I only pick the
basic and widely-used materials. For an advanced and complete discussion on this topic, refer to
[Pei15].

10.1 Basic Concepts

Dual Lattices. Given a lattice L, it is easy to see that the set of points whose inner products
with the vectors in L are all integers constitutes a lattice. Such a lattice is called dual lattice of L,
usually denoted as L∗.

Definition 10.1.1 (Dual Lattice). The dual (sometimes called reciprocal) of a lattice L ⊆ Rn is
defined as:

L∗ = {v : 〈v,L〉 ⊆ Z}

Moreover, if B is a basis of L, then B−T = (B−1)T = (BT)−1 is a basis of L∗. ♢

For example, (cL)∗ = c−1L.
Xiao!Xiao: Define the n-th successive minima.

10.2 The “Hard-Core” on Lattices
In this section, we define several hard problems on lattices and briefly survey the known results for
their complexity. We remark that these problems are not related to crypto applications directly,
roughly because they do not have “nice” algebraic structures that can be employed by crypto.
However, they are important because they provide hardness. In Section 10.3, we will introduce
lattice problems that are directly related to crypto; the hardness of those problems are established
by reductions to the problems in this section.

10.2.1 The Shortest Vector Problem
The most basic and important problem on lattices is the shortest Vector Problem (SVP). This
problem has been here since the 18th century, attracting attentions from famous mathematicians
including Gauss and Minkovski.

Definition 10.2.1 (Shortest Vector Problem). Given an arbitrary basis B of some lattice L =
L(B), find a shortest nonzero lattice vector, i.e., a v ∈ L for which ‖v‖= λ1(L). ♢

This question has been open for hundreds of years. But until today, we still do not have a
solution. One important result for this question is the following theorem given by Minkovski,
which upper-bounds the solution.

92

Theorem 10.2.1 (Minkowski’s First Theorem). For any lattice L, we have λ1(L) ≤
√
n·det(L)1/n.

♢

There are several other theorems of this kind, e.g. Hermite’s Theorem, Gauss Heuristic. See
[HPSS08] for more discussion.

Although the SVP problem is very fascinating, more closely related to modern cryptography is
the approximate version of SVP (and also some other problems on lattices of similar flavor). We
now summarize them in the following.

Definition 10.2.2 (Approximate SVP Problem). For lattice dimension parameter n, gapSVPγ(n)
is a promise (decisional) problem. On input (L, d), where L is a n-dimensional lattice and d is real
number, output:

• YES: if λ1(L) ≤ d,

• NO: if λ1(L) > γ(n) · d

♢

Definition 10.2.3 (Approximate Shortest Independent Vector Problem). Given a basis B of a full-
rank n-dimensional lattice L = L(B) (i.e. B is a n×n full-rank matrix), output a set S = {si} ⊂ L
of n linearly independent lattice vectors where ‖si‖≤ γ(n) · λn(L) for all i. ♢

Definition 10.2.4 (Bounded-Distance Decoding). Given a basis B of an n-dimensional lattice
L = L(B) and a target point t ∈ Rn with the guarantee that dist(t,L) < d := λ1(L)/(2γ(n)),
the bounded-distance decoding problem BDDγ is to find the unique lattice vector v ∈ L such that
‖t− v‖< d. ♢

Algorithms and complexity.1 The above lattice problems have been intensively studied and
appear to be intractable, except for very large approximation factors. Known polynomial-time
algorithms like the one of Lenstra, Lenstra, and Lovász [LLL82] and its descendants (e.g., [Sch87]
with [AKS01] as a subroutine) obtain only slightly sub-exponential approximation factors γ =
2Θ(n log logn/ logn) for all the above problems. Known algorithms that obtain polynomial poly(n)
or better approximation factors, such as [Kan83, AKS01, MV10, ADRS15], either require super-
exponential 2Θ(n logn) time, or exponential 2Θ(n) time and space. There are also time-approximation
tradeoffs that interpolate between these two classes of results, to obtain γ approximation factors
in 2Θ̃(n/ log γ) time [Sch87]. Importantly, the above also represents the state of the art for quantum
algorithms, though in some cases the hidden constant factors in the exponents are somewhat smaller
(see, e.g. [?]). By contrast, the integer factorization and discrete logarithm problem (in essentially
any group) can be solved in polynomial time using Shor’s quantum algorithm [Sho99].

On the complexity side, many lattice problems are known to be NP-hard (sometimes under
randomized reductions), even to approximate to within various sub-polynomial no(1) approximation
factors. E.g., for the hardness of SVP, see [Ajt98, Mic98, Kho04, HR07]. However, such hardness is
not of any direct consequence to cryptography, since lattice-based cryptographic constructions so
far rely on polynomial approximation problems factors γ(n) ≥ n. Indeed, there is evidence that for
factors γ(n) ≥

√
n, the lattice problems relevant to cryptography are not NP-hard, because they

lie in NP ∩ coNP [GG98, AR04].
1This part is taken verbatim from [Pei15]

93

10.3 Crypto-Friendly Lattice Problems

10.3.1 Short Integer Solution (SIS)

Short Integer Solution. The short integer solution (SIS) problem was first introduced in the
seminal work of Ajtai [Ajt96], and has served as the foundation for one-way and collision-resistant
hash functions, identification schemes, digital signatures, and other “minicrypt” primitives (but
not public-key encryption).

Definition 10.3.1 (Short Integer Solution). For A
$←− Zn×mq , the short integer solution problem

SISn,q,β,m asks to find a nonzero integer vector z ∈ Zm of norm ‖z‖≤ β such that

Az = 0 ∈ Znq

♢

Theorem 10.3.1 (Hardness of SIS). For any m = poly(n), any β > 0, and any sufficiently large
β ≤ q/poly(n), solving SISn,q,β,m with non-negligible probability is at least as hard as solving
gapSVPγ and SIVPγ on arbitrary n-dimensional lattices (i.e., in the worst case) with overwhelming
probability, for some γ = β · poly(n). ♢

Here are some remarks on the harness parameters:

• For β ≥ q, the SIS problem is easy: simply setting z = (q, 0, . . . , 0)T gives us Az = 0 mod q.

• β and m have to be large enough to guarantee the existence of a solution. This is the case
whenever β ≥

√
n log q and m ≥ n log q. This is because of the following pigeonhole argument:

first, we can assume without loss of generality that m = n log q.2 Then because there are
more than qn vectors x ∈ {0, 1}m, there must be two distinct x, x′ such that Ax = Ax′ ∈ Znq ,
so their difference z = x − x′ ∈ {0, 1,−1}m is a solution with ‖z‖≤ β for m = n log q and
β ≥
√
n log q.

• After a line of work[MR04, GPV08], the state-of-the-art value for the hardness parameters
are γ = β · Õ(

√
n) and β ≤ q/Õ(

√
n).

• [MP13] achieve β ≤ q/nε for any constant ε > 0. But the γ is somewhat subtle: it can depend
on the norm of the SIS solution in the ℓ∞ norm.

10.3.2 Ring-SIS
In the standard SIS problem defined in previous section, the underlying sets sets are Zn and Znq .
Roughly speaking, Ring-SIS is the ring version of the standard SIS problem, i.e. the underlying sets
are rings R and Rq (corresponding to Zn and Znq in the standard SIS setting, respectively). People
care bout this ring version because it usually provides more efficient cryptographic constructions,
due to the “richer” algebraic structure of the underlying rings. Of course, the analysis of harness
assumptions requires more careful analysis, as the “richer” structures of rings admits more attacks
than that for a standard SIS.

2This is because once we can solve SIS for An×m, we can easily extend the solution when more rows are appended
at the end of A: simply append 0’s at the end of the solution vector.

94

Definition 10.3.2 (Ring-SIS). Let R be a ring, equipped with some norm ‖[‖] ·. For a positive

integer q, denote the quotient ring R/qR as Rq. For a
$←− Rmq , the Ring-SIS problem R-SISq,m,β is

to find a nonzero vector z ∈ Rm of norm ‖[‖] a ≤ β such that:

Fa(z) = 〈a, z〉 = 0 ∈ Rq.

♢

Remark 10.3.1 (Harness of Ring-SIS). The hardness of Ring-SIS depends on the choice of the
underlying ring R and the norm ‖[‖] ·. A typical choice is to set R to be the so-called rank-n ring
of convolution polynomials Z[x]/〈xn − 1〉, in which case Rq will be Zq[x]/〈xn − 1〉.

When the ring is of the form Z[x]/〈f(x)〉 where deg(f) = n, the preferred norm is the so-called
canonical embedding σ : Z[x]/〈f(x)〉 → Cn from algebraic number theory. This embedding maps
each ring element r ∈ R to the vector (r(α1), . . . , r(αn)) ∈ Cn, where the αi ∈ C are the n complex
roots of f(X).

Such choice of the underlying ring and the norm has several advantages. As the reason is
advanced and complicate, we do not provide further discussion. We refer the readers to Section 4.3
in [Pei15].

10.3.3 Learning with Error (LWE)
Xiao!Xiao: [BCM+18, Section 2.3] also contains a clean summarization of the LWE assumption.

The learning with errors (LWE) problem was defined by Regev [Reg05].

Definition 10.3.3 (Decisional LWE Problem [Reg05]). The LWEn,q,χ,m problem is two distinguish
the following tow distributions:

(A, sTA+ eT mod q) and (A,uT)

where A
$←− Zn×mq , s $←− Zn×1q , e← χn×1 and u

$←− Zmq . ♢

Different presentations of the hardness reduction of (average-case) LWE assumption to (worst-
case) lattice problems exist in the literature. The one presented here (taken from [GSW13]) is
probably the clearest one.

Definition 10.3.4 (B-Bounded Dsitributions). A distribution ensemble {χn}n∈N, supported over
the integers, is called B-bounded if

Pr
e←χn

[|e| > B] ≤ negl(n)

♢

The following theorem shows the reduction from the LWE problem to the GapSVP problem,
which is critical for all LWE-based cryptosystem. This idea is originated from [Reg05], and refined
in [Pei09, MM11, MP12]. The version presented here is stated as Corollary 2.1 from [Bra12].

Theorem 10.3.2 (Hardness of LWE). Let q = q(n) ∈ N be either a prime power or a product
of small (size poly(n)) distinct primes, and let B ≥ ω(logn) · n. Then there exists an efficient
sampleable B-bounded distribution χ such that if there is an efficient algorithm that solves the
average-case LWE problem for parameters n, q, χ, then:

95

• There is an efficient quantum algorithm that solves gapSVP
Õ(nq/B)

on any n-dimensional
lattice.

• If q ≥ Õ(2n/2), then there is an efficient classical algorithm for gapSVP
Õ(nq/B)

on any n-
dimensional lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage, then we require
B ≥ Õ(n) and the resulting approximation factor is slightly larger than Õ(n1.5q/B). ♢

Modulus-to-Noise Ratio. The value q/B usually arouses concerns regarding the efficiency of
constructions , so people refer to it as “modulus-to-noise ratio”.

Discrete Gaussian Distribution. The most widely-used error distribution to construct hard
LWE problem is the discrete version of Gaussian distribution. It is the distribution over Z where
the probability of x is proportional3 to e−π(|x|/σ)2 , where σ is the width parameter. The hardness of
LWE w.r.t. discrete Gaussian distribution is stated as the following theorem. A discrete Gaussian
with parameter σ is B = σ bounded, except with negligible probability.

Theorem 10.3.3 (Hardness of LWE w.r.t. Discrete Gaussian [Reg05]). For any m = poly(n), any
modulus q ≤ 2poly(n), and any (discretized) Gaussian error distribution χ of parameter σ = α · q ≥
2
√
n where 0 < α < 1, solving the decisional LWEn,q,χ,m problem is at least as hard as quantumly

solving gapSVP
Õ(n/α)

and SIVP
Õ(n/α)

on arbitrary n-dimensional lattices. ♢

Note that the exact values of m (the number of samples) and q (the modulus) play essentially
no role in the ultimate hardness guarantee (apart from the lower bound for q ≥ 2

√
n/α). However,

the approximation factor γ = Õ(n/α) degrades with the modulus-to-noise ration σ/q = 1/α. For
gapSVPγ and SIVPγ , the best known (classical or quantum) algorithms for these problems run in
time 2Õ(n/ log γ), and in particular they are conjectured to be intractable for γ = poly(n).

10.3.4 Learning with Rounding
LWE problem is inherently randomized. But there are some crypto primitives (e.g. PRF) that
prefers deterministic hardness assumption. To address this issue, [BPR12] proposed a deterministic
version of LWE, called “learning with rounding” (LWR), and showed how to reduce it to LWE. LWR
is used to build efficient PRF based on hard lattice problems, and plays a important role in other
applications such as watermarking [KW17, KW19] and trapdoor hash functions [DGI+19].

Definition 10.3.5 (Rounding Function). For integers p ≥ q ≥ 2, the rounding function b·ep : Zq →
Zp is defined as:

bxep =
⌊
(x mod q)

q
· p
⌉

mod p

This notion extends to vectors and matrices component-wisely. ♢

Definition 10.3.6 (Learning with Rounding). For a distribution Ds on Zn×1q , the learning with
rounding problem LWRDs

n,q,p,m problem is two distinguish between the following tow distributions:
3“Proportional” means that one needs to normalize the value such that the probability for each x ∈ Z sum up to

1.

96

(A, bsTAep) and (A,uT)

where A
$←− Zn×mq , s Ds←−− Zn×1q and u

$←− Zm×1p ♢

Definition 10.3.7 (Hardness of LWR). Let χ be any efficiently sampleable B-bounded distribution
over Z, and let p ≤ q

B·nω(1) . Then for any distribution Ds on Znq , solving decision LWRDs
n,q,p,m is at

least as hard as solving decision LWEDs
n,q,χ,m, i.e. the LWEn,q,χ,m problem where the secret vector s

comes from the same distribution Ds. ♢

10.3.5 Ring-LWE
Just like SIS vs Ring-SIS, the LWE problem also has a ring version called Ring-LWE.

Definition 10.3.8 (Decisional Ring-LWE Problems). The decisional Ring-LWE problem R-LWEq,χ,m
is to distinguish the following two distributions:

(a, s · a+ e mod q) and (a,u)

where a
$←− Rmq , s $←− Rq, u

$←− Rmq and e← χm. ♢

As that case of Ring-SIS, the hardness of Ring-LWE depends on the choice of the underlying
ring and the error distribution. This was investigated in the work of [LPR10], where they pick a
cyclotomic ring and a special error distribution4. We will not provide further discussion here. Next,
we will only list the hardness reduction theorem from Ring-LWE to gapSVP. We refer the readers
to [LPR10, LPR13, AP13] and Section 4.4 of [Pei15] for more details.

Theorem 10.3.4 (Hardness of Ring-LWE [LPR10]). For any m = poly(n), cyclotomic ring R of
degree n (over Z), and appropriate choices of modulus q and error distribution χ of error rate α < 1,
solving the R-LWEq,χ,m problem is at least as hard as quantumly solving the gapSVPγ problem on
arbitrary ideal lattices in R, for some γ = poly(n)/α. ♢

10.4 Two Critical Equations for Lattice-Based Crypto
The materials presented in this part is based on the excellent talks by Hoeteck Wee (link) and
David Wu (link).

Xiao!Xiao: Explain how to derive and apply the follow two equations

C1, . . . ,Cn 7→ Cf(x)[
C1 − x1G | . . . | Cn − xnG

]
Hf,x = Cf − f(x)G

10.5 Supplementary Readings
Here are some resources for further reading:

• Lattices Algorithms and Applications by Daniele Micciancio.
4Actually, [LPR10] uses a certain fractional ideal R∨ that is dual to R

97

https://simons.berkeley.edu/talks/tutorial-encrypted-computation-lattices
https://simons.berkeley.edu/talks/homomorphic-signatures-and-pre-processing-nizk
http://cseweb.ucsd.edu/classes/wi10/cse206a/

• Lattices in Computer Science by Oded Regev.

• Lattices, Learning with Errors and Post-Quantum Cryptography by Vinod Vaikuntanathan.

• Lattices in Cryptography by Chris Peikert.

• The textbook by Goldwasser and Micciancio [MG02].

• Here is a recent paper by Chen, Liu, and Zhandry [CLZ22] containing a nice summary of SIS,
LWE, and DCP.

98

https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html
http://people.csail.mit.edu/vinodv/CS294/
https://web.eecs.umich.edu/~cpeikert/lic15/

Chapter 11
Coding Theory

11.1 Basic Concepts

Definition 11.1.1:

An (n, k, d)q code is a function C : Σk → Σn such that:

• |Σ| = q;

• For every x, x′ ∈ Σk, distH(C(x), C(x′)) ≥ d, where distH(·, ·) is the hamming distance.

In particular, we use [n, k, d]q to denote a linear (n, k, d)q code.

Xiao!Xiao: talk about code rate (or information rate) R. Fractional Hamming distance. δ-distance
code.

11.2 The Bounds

Lemma 11.2.1: Singleton Bound

Let C be a (n, k, d)q code. Then d ≤ n− k + 1

Proof. Let C ′ : Σk → Σn−d+1 be the projection of C to the first n − d + 1 coordinates. That is,
C ′(x) contains the first n − d + 1 entries of C(x). We see that C ′ must be an injective function,
because if C ′(x) = C ′(x′) with x 6= x′, then C(x) and C ′(x) can differ in at most d− 1 coordinates,
contradicting the fact that C has minimum distance at least d. But if C ′ is injective then its range
must be at least as large as its domain, and so n− d+ 1 ≥ k. ■

Definition 11.2.2: MDS Codes

An (n, k, d)q code is Maximum Distance Separable (MDS) if d = n − k + 1 (i.e., the equality is
achieved in the singleton bound).

Lemma 11.2.1 (Gilbert-Varshamov Bound). For every n and d
n <

1
2 there is a [n, k, d]2 code such

that
k ≥ n ·

(
1−H2

(d
n

))
−Θ(logn)

where H2(·) is Shannon’s binary entropy.

99

In terms of code rate and δ distance, the Gilbert bound shows that for any δ < 1
2 , when n is

large enough, there always exists a [n, k, d]2 code such that:

R ≥ 1−H2(δ)− o(1)

♢

Proof. To do the proof, we first need to recall some implications from Stirling’s formula. Stirling’s
approximation gives

n! = Θ
(√
n ·
(n
e

)n)
This implies: (

n

k

)
= Θ

(√
n

k(n− k)
·
(n
k

)k · (n

n− k
)n−k)

which implies:
log
(
n

k

)
= n ·H2

(k
n

)
+Θ(logn)

Xiao!Xiao: to be done from Luca’s Lecture notes... Also, check the Gilbert-Varshamov bound in
Chapter 19.2 in [AB09]. ■

11.3 Linear Codes
Given a specific tuple of (n, k, d), there are so many ways to design a [n, k, d] code. One special
type of codes draws our attention due to its clean format and rich theoretical implications. Such
kind of codes is linear code (on F2). Its linearity admits the application of the beautiful theory of
linear algebra.

Basic Concepts. The codeword of a [n, k, d]2 linear code can be treated as a dimension-k linear
subspace of Fn2 . Then, any set basis {g1, . . . , gk} for the codeword space are called generators of
this linear code. We say C is of length-n and rank-k (or dimension-k, written as dim(C) = k), since
C actually forms a dimension-k subspace of the vector space Fn2 .

Let C be a [n, k, d]2 linear code. Any codeword c ∈ C can be expressed as a matrix-vector
multiplication GTx, where G is a k × n matrix whose i-th row is gi.1 G is called the generator
matrix for C. The parity check matrix is the matrix H such that HGT = 0. It has the property that
any vector c is a valid codeword (i.e., ∃v s.t. c = GTv) if and only if Hc = 0. Due to this property,
the value Hc is called the “syndrome” of c.

Remark 11.3.1 (The Standard Form of Generator Matrices). The generator matrix G is in the
standard form if G =

[
1k Pk×(n−k)

]
. Then, the corresponding parity check matrix is given by

H =
[
−PTk×(n−k) 1n−k

]
.

The dual code of C is defined as C⊥ :=
{

x | x · z = 0 ∀z ∈ C
}

. Here are some properties of dual
codes:

1Traditionally, people prefer to set the dimension of G to be k×n (i.e., the code then consists of the row-spanned
space of G), instead of n × k. Some authors prefer to use the “row-vector” representation, where a message is
interpreted as a row vector xT and the encoding procedure is then xT G. Throughout this book, we use the “column-
vector” representation: we representation a message by a column vector x, and use GT x for encoding.

100

https://people.eecs.berkeley.edu/~luca/cs294/index.htm

1. The generator matrix G of C is always the parity matrix of C⊥.

2. (C⊥)⊥ = C.

3. dim(C) + dim(C⊥) = n.

11.4 Walsh-Hadamard Code

Walsh-Hadamard code is a [2n, n, 2n−1]2 code. Given any message m ∈ {0, 1}n

WH(m) = (〈m, [1]2〉, 〈m, [2]2〉, . . . , 〈m, [2n]2〉),

where [i]2 is the binary representation of i, and “〈·, ·〉” is the inner product modulo 2.

11.5 Reed-Solomon Code
Reed-Solomon code makes use of larger alphabet size to achieve better distance and rate. It is a
[n, k, n− k + 1]q code where:

• the alphabet is a size-q field Fq; and

• k ≤ n ≤ q.

For a message m = (m0, . . . ,mk−1) ∈ Fkq , its codeword is computed as follows:

1. Treat m = (m0, . . . ,mk−1) as degree-(k − 1) polynomial in Fq[x]:

m(x) = m0 +m1 · x+m2 · x2 + . . .+mk−1 · xk−1.

2. Evaluate m(x) on n prefixed points {x1, . . . , xn}.2

3. Output the evaluations as the codeword for m, i.e.

RS(m) =
(
m(x1), . . . ,m(xn)

)
.

Vandermonde Matrix Representation. The encoding procedure of Reed-Solomon code can be
expressed as a Vandermonde linear transformation. For example, if we use {x1, . . . , xn} as the set
of evaluation points, then for any m = (m0, . . . ,mk−1),

RS(m) =


1 x1 x21 · · · xk−11

1 x2 x22 · · · xk−12
...

...
...

...
1 xn x2n · · · xk−1n


n×k

·


m0

m1
...

mk−1


k×1

=


m(x1)
m(x2)

...
m(xn)


n×1

Xiao!Xiao: Need to talk about the Folded Reed-Solomon code [GR08]. It is used in the recent
impressive work by Yamakawa and Zhandry [YZ22].

2Common choices for the set of evaluation points include {0, 1, . . . , n − 1}, {0, 1, α, α2, . . . , αn−2}, or
{α0, α1, . . . , αn−1}, where α is the primitive element of Fq.

101

https://en.wikipedia.org/wiki/Primitive_element_(finite_field)

11.6 Coding theory in general
Xiao!Xiao: More coding theory stuff

11.7 Non-malleable code
Xiao!Xiao: On non-malleable code

11.7.1 Splite-state non-malleable code

11.8 Randomized encoding (used in [KOS18])
Xiao!Xiao:

• the plain definition can be satisfied by Yao’s garbled circuits.

• But there is an adaptive version. It can be constructed by equivocal commitments plus
garbled circuits. See the reference in [KOS18].

• [Lin17, Chapter 1] contains a good introduction to randomized encoding.

102

Chapter 12
(Classical) Complexity Theory

12.1 The Basics
Traditionally, Complexity Theory cares about constructible functions. Take time-constructible
functions as an example (similar reason applies to space-constructible). For such functions, a TM
“knows” the time bound under which it is operating, simply by “looking at” the description of the
function. These functions are usually considered natural. Most importantly, several theorems only
holds (provably) for such functions. A typical example is the time hierarchy theorem, whose proof
requires that the TM must determine in O(f(n)) time whether an algorithm has taken more than
f(n) steps. Time-constructibility is thus proposed to formulate these natural functions.

Definition 12.1.1 (Time Constructibility). A function f : N 7→ N is time-constructible if there
is a TM M that computes the function 1n 7→ [f(n)]2 in O

(
f(n)

)
time, where [f(n)]2 denotes the

binary representation of the number f(n). ♢

Remark 12.1.1. Here are some remarks:

1. Usually, a Turing machine uses a binary alphabet. If we use such a TM to compute the
function 1n → f(n), the output is by default in binary representation. In the above definition,
we put [f(n)]2 mainly to make this requirement explicit for the machines which do not use a
binary alphabet. But this does not matter much since other alphabet can be converted into a
binary one without much blowing-up in time complexity.

2. Some textbook define time constructibility only for functions f(n) > n. That is to allow the
algorithm time to read its input.

3. There is a definition called “fully time-constructible functions”. It is the same as Definition
12.1.1 except that the computation should be done in exactly f(n) time, instead of O

(
f(n)

)
.

Definition 12.1.2 (Space Constructibility). A function f : N→ N is space-constructible if there is
a TM that computes the function 1n → [f(n)]2 in O(f(n)) space, where [f(n)]2 denotes the binary
representation of the number f(n). ♢

In some scenarios such as computing on low storage machines, the space resource can be a
bottleneck of computation power. Thus people also care about the class of language captured by
deterministic/non-deterministic logarithm space. Three potential problems arise when we want to
investigate L and NL:

1. The input already occupies linear space.

2. The machine may not have enough space to write down the full output.

3. Since NL ⊆ P, NL may not be “closed” under Karp reduction.

103

For the first problem, we do not count the space occupied by the input. In addition, we usually
(e.g. in Savitch’s theorem 12.5.1) restrict ourselves to space complexity f(n) ≥ log(n), such that
we have enough space to write down the index of the input position that we want to access. For
the last two problems, people propose implicitly-computable functions and log space reduction as
shown in the following definitions.

Definition 12.1.3 (Implicit Logspace Computability). A function f : {0, 1}∗ → {0, 1}∗ is implicitly
logspace computable, if the following holds

(1) ∀x ∈ {0, 1}∗, ∃c s.t. |f(x)| ≤ |x|c (i.e. f is polynomially bounded).

(2) The languages Lf = {(x, i) | f(x)i = 1} and L′f = {(x, i) | i ≤ |f(x)|} are in L.

♢

Remark 12.1.2. The definition of logspace computability may seem confusing at first glance.

1. The definition of logspace computability may seem confusing at first glance. But all it wants
to say is that the function can be computed using log space. This requirement boils down to
the two languages in the second item of the definition: (i) Lf ∈ L means each bit of the output
can be computed in log space; (ii) L′f ∈ L means the total length of the output can be computed
in log space. Also, note that the first item in the definition is to restrict us to functions the
polynomial output size. Without it, a function with exponential size of output may also satisfy
the requirement in (2).

2. Do not confuse it with the concept of space/time constructible functions (Definition 12.1.1
and 12.1.2). Indeed, space/time constructibility is more about the properties of functions,
instead of machines. It is proposed to capture all the “interesting” and natural functions
people care about, ruling out functions that are troublesome to analysis (Fortunately, those
cases are usually rare and unnatural). In contrast, implicit-logspace computability is more
about the machines. Since logspace machine do not have enough space to write down the
full output, people thus propose this class of function to allow meaningful discussion for such
machines.

Definition 12.1.4 (Logspace Reduction and NL-Completeness). A languageA is logspace reducible
to language B, denoted A ≤log B, if there exists a implicitly logspace computable function f :
{0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ A ⇔ f(x) ∈ B

We say that B ∈ NL is NL-complete if for every A ∈ NL, A ≤log B. ♢

Definition 12.1.1: Various Types of Reductions

Karp Reduction: let X and Y be decisional problems. A polynomial-time computable function
f is called a Karp reduction from X to Y if, for every x, it holds that x ∈ X if and only if
f(x) inY .
The following quote from [Gol08] explains the relation between Karp reduction and Tur-
ing (aka Cook) reduction: “Thus, syntactically speaking, a Karp-reduction is not a Cook-
reduction, but it trivially gives rise to one (i.e., on input x, the oracle machine makes query

104

f(x), and returns the oracle answer). Being slightly inaccurate but essentially correct, we
shall say that Karp-reductions are special cases of Cook-reductions.”

Levin Reduction: let R and R′ be relations for two search problems. Let

SR = {x : ∃y s.t. (x, y) ∈ R}, SR′ = {x′ : ∃y′ s.t. (x′, y′) ∈ R′}.

A pair of polynomial-time computable functions, f and g, is called a Levin reduction from
R to R′ if f is a Karp reduction from SR to SR′ , and for every x ∈ SR and y′ ∈ R′(f(x)) it
holds that

(
x, g(x, y′)

)
∈ R, where R′(x′) = {y′ : (x′, y′) ∈ R′}.

Levin Reduction can be viewed as a generalization of Karp reduction to search problems.
We will use this type of reduction in Theorems 12.4.1 and 12.6.2.

Turing Reductions: if A is Turing reducible to B in polynomial time, then A ⊆ PB. This
reduction is usually denoted as A ≤pT B. This type of reduction is also called “Cook
reduction”. It is useful for #P completeness.

Parsimonious Reductions: a Parsimonious reduction R from problem X to problem Y is a
reduction such that for any instance x of X, the number of solutions to x is equal to the
number of solutions to problem R(x), which is an instance of Y .

Theorem 12.1.1 (Efficient Universal Turing Machine [HS66]). There exists a TM U such that for
every x, α ∈ {0, 1}∗, U(x, α) = Mα(x), where Mα denotes the TM represented by α. Moreover, if
Mα halts on input x within T steps then U(x, α) halts within c · T logT steps, where c > 0 is a
number depending only on

• Mα’s alphabet size

• Mα’s number of tapes

• Mα’s number of states

♢

12.1.1 Oblivious TM, Configuration Graphs and Snapshots
Xiao!Xiao: FiXme updates up to here (To be done ...)

12.1.2 Transformations between Different Computational Models

Need to formalize these folklore claims

• Any Boolean circuit can be transformed into an equivalent arithmetic circuit over any field,
with at most a constant-factor blowup in size.

• Any circuit Cir is not layered it can easily be transformed into a layered circuit Cir′ with a
small blowup in size.

• If a computer program runs in time T (n) on a RAM with at most S(n) cells of memory,
then the program can be turned into a (layered, fan-in 2) arithmetic circuit of depth not

105

much more than T (n) and width of about S(n). [Each layer of the circuit represent a
configuration of the RAM execution. So the circuit has depth ≈ T and width ≈ S.]

• There exist a transformation from the time-T space-S RAM computation to a circuit of
depth S logT and size 2Θ(S). (See [Tha20, Section 5.4].)

• RAM-to-CirSAT. Any RAM program, running in time T and outputting y on input x,
can be efficiently transformed into an instance (C, x, y) of arithmetic circuit satisfiability
(i.e. ∃w s.t. C(x,w) = y), where the circuit C has size close to T and depth close to logT ,
and the witness w is of size ≈ T . (See [Tha20, Section 5.5].)

12.2 Boolean Circuits

Definition 12.2.1: Boolean Circuits

For every n ∈ Z, an n-input single-output Boolean circuit is a directed acyclic graph with n sources
(vertices with no incoming edges) and one sink (vertex with no outgoing edges). All non-source
vertices are called gates and are labeled with one of ∧, ∨ or ¬ (i.e., the logical operations OR,
AND, and NOT). The vertices labeled with ∨ and ∧ have fan-in (i.e., number of incoming edges)
equal to 2, and the vertices labeled with ¬ have fan-in 1. The size of Cir, denoted by |Cir|, is the
number of vertices in it.

Remark 12.2.2: On the number of fan-out

Note that, in Definition 12.2.1, we do not put any restriction on the fan-out of sources, i.e. one
input can go to several gates. But, traditionally, other gates (except for the input gates) have
fan-out 1.
It does not make too much difference to allow more fan-out. However, the fan-in is usually clearly
stipulated as in Definition 12.2.1. Two remarks follow:

• For circuits whose fan-in ≤ 2, its number of edges cannot be too big even if arbitrary fan-out
number is allows. Assume that the number of total gates is m for such circuit. Then the
total number of its edges is bounded by 2m.

• Boolean formulae are just circuits where each gate has fan-in equal to 1.

12.2.1 Boolean Formulas, CNFs and Universal Gates
We first distinguish between Boolean circuits (functions) from Boolean formulas.
Definition 12.2.3: Boolean Formulas

A Boolean circuit is a Boolean formula if the fan-out of each gate is no ≤ 1.

• If you are a cryptographer, memorize the following claim: polynomial-size Boolean formulas
are equivalent to NC1 (see this lecture note for a proof. See [GVW12, AV19] for applications).

Fact 12.2.1. NAND and Tof (Toffoli) gates:

106

https://www.cs.toronto.edu/~toni/Courses/Complexity2015/lectures/lecture7.pdf

• A Toffoli gate is defined as Tof(a, b, c) =
(
a, b,XOR

(
AND(a, b), c

))
= (a, b, ab ⊕ c). It can be

used to compute AND, NOT, and XOR as follows:

– AND(a, b): Tof(a, b, 0) = (a, b, ab);
– NOT(a): Tof(1, 1, a) = (1, 1, 1⊕ a) = (1, 1,¬a);
– XOR(a, b): Tof(1, a, b) = (1, 1, a⊕ b).

• A NAND-gate is defined as: NAND(a, b) = ¬(a ∧ b) = ¬a ∨ ¬b. We can convert a AND and
OR gate to a NAND gate in the following way:

– NOT(a) = NAND(a, a)

– AND(a, b) = ¬NAND(a, b) = NAND
(
NAND(a, b),NAND(a, b)

)
– OR(a, b) = NAND(¬a,¬b) = NAND

(
NAND(a, a),NAND(b, b)

)
• NAND(a, b) = c if and only if a+ b+2c− 2 ∈ {0, 1}. This simple obervation helps in building

NIZK and NIWI in [GOS06b, GOS06a].

Theorem 12.2.4: Boolean Functions to CNFs

For every Boolean function f : {0, 1}ℓ → {0, 1} there is an ℓ-variable CNF formula ϕ of size ℓ · 2ℓ
such that ϕ(x) = f(x) for every x ∈ {0, 1}ℓ, where the size of a CNF formula is defined to be the
number of ∧ or ∨ symbols it contains.

Proof. We give a constructive proof, building such a CNF formula ϕ explicitly. For a variable
v ∈ {0, 1}ℓ, it is easy to construct a ℓ-variable “characteristic function” Cv(z1, . . . , zℓ) such that
Cv(z1, . . . , zℓ) only consists of disjunctions among zi’s and zi’s, and satisfies the following require-
ment:

Cv(z1, . . . , zℓ) =

{
1, if z1‖ . . . ‖zℓ = v

0, if z1‖ . . . ‖zℓ 6= v

Then the following formula satisfies all the property specified in the theorem:

ϕ(z1, . . . , zℓ) =
∧

v:f(v)=1

Cv(z1, . . . , zℓ).

■

A very important implication of Theorem 12.2.4 is that: {AND,NOT,OR} form a universal set
for Boolean circuits. According to Fact 12.2.1, we know that {NAND} or {Tof} is also universal
for Boolean circuits.
Corollary 12.2.5: Universal Gates for Boolean Circuits

{AND,NOT,OR} is a universal set of gates for Boolean circuits. So is {AND,XOR}, {NAND}, or
{Tof}.

Proof (An alternative proof of Corollary 12.2.5). We provide a different proof for Corollary 12.2.5
without invoking Theorem 12.2.4.

Xiao!Xiao: Outline of this proof

107

• Any Boolean function f : {0, 1}ℓ 7→ {0, 1} can be viewed as a multi-linear polynomial from
Zℓ2 7→ Z2.

• It can be viewed as a polynomial because f is a finite-value function. Recall that any finite-
value function can be interpolated by a polynomial; It is (multi-)linear because b2 = b for any
b ∈ {0, 1} (i.e., degree higher than 1 does not make any contribution).

• Therefore, to perform any computation, we only need the ability to perform addition and
multiplication on Z2, which are exactly AND and XOR.

■

The following theorem is not surprising, given that 3SAT is NP complete. Also, the proof is not
hard. However, its proof contains very useful tricks for converting circuit gates to formula clauses
(more accurately, 3CNF clauses).
Theorem 12.2.6: CKT-SAT to 3CNF

There is a polynomial-time reduction from CKT-SAT to 3CNF. (This theorem is w.r.t. 2-fan-in,
unbounded fan-out circuits.)

Proof. (See the second half of this video.
The key trick is the following formula from mathematical logics:

a⇒ b ⇔ ¬a ∨ b.

Using this formula, we get that

• For AND gates: w3 = w1 ∧ w2 can be converted to (¬w3 ∨ w1) ∧ (¬w3 ∨ w2) ∧ (¬w1 ∨ ¬w2 ∨ w3). The proof
goes as follows:

w3 = w1 ∧ w2

⇔ (w3 ⇔ w1 ∧ w2)

⇔ (w3 ⇒ w1 ∧ w2) ∧ (w1 ∧ w2 ⇒ w3)

⇔
(
¬w3 ∨ (w1 ∧ w2)

)
∧
(
¬(w1 ∧ w2) ∨ w3

)
⇔ (¬w3 ∨ w1) ∧ (¬w3 ∨ w3) ∧ (¬w1 ∨ ¬w2 ∨ w3)

• For NOT gates: w2 = ¬w1 can be converted to (w1 ∨ w2) ∧ (¬w1 ∨ ¬w2). Its proof goes as the above.

• For OR gates: w3 = w1 ∨ w2 can be converted to (¬w3 ∨ w1 ∨ w2) ∧ (¬w1 ∨ w3) ∧ (¬w2 ∨ w3). Its proof goes
as the above.

More generally, any propositional formula involving 3 variables can be converted to a CNF.) ■

12.2.2 NC and AC circuits

Definition 12.2.7: The class NC

For every d, a language L is in NCd if L can be decided by a family of Boolean circuits {Cirn}
where Cirn satisfies the following requirements:

• it is of poly(n) size, and

• it is of O(logd n) depth.

The class NC is ∪i≥0NCi.

108

https://www.youtube.com/watch?v=LOi8w6bJbOg&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=10

Definition 12.2.8: The class AC

For every d, a language L is in ACd if L can be decided by a family of Boolean circuits {Cirn}
where Cirn satisfies the following requirements:

• it is of poly(n) size, and

• it is of O(logd n) depth, and

• its OR and AND gates are allowed to have unbounded fan-in.

The class AC is ∪i≥0ACi.

Fact 12.2.2. NCi ⊆ ACi ⊆ NCi+1, where the inclusion is known to be strict for i = 0. (Proof:
Unbounded (but poly(n)) fan-in can be simulated using a tree of OR/AND gates of depth O(logn).)

Fact 12.2.3. The following problems (more accurately, their language version) are in AC0:

1. Binary addition (with carry bits) of 2 n-bit binary strings.

Here are some interesting lower-bounds for AC0:1

1. Depth-2 circuits are either DNFs or CNFs.

2. Every Boolean function can be computed by a (exponential-size) DNF and also by a CNF.
(This is just Thm. 12.2.4.)

3. Depth-2 AC0 circuits for PARITY have size at least Ω(2n).

4. If Cir is an AC0 circuit of size s, depth d computing PARITY, then s ≥ 2Ω(n
1

d−1).
We remark that this famous theorem says AC0 circuit of constant depth and subexponential
size2 cannot compute PARITY. It is a highly non-trivial result. The proof exploits Håstad’s
switching lemma.

The following problems (more accurately, their language version) are in NC0:

1. Binary addition (with carry bits) of 3 n-bit binary strings.

2. This class circuits turn out to be super-important for the recent breakthrough in build-
ing indistinguishability obfuscation (see [JLS21] and the references therein). One important
property is that all such circuits have constant locality, i.e., each bit of the output can depend
on at most a constant number of the input bits. Therefore, any NC0 circuit can be expressed
as a constant degree multi-variate polynomial over a ring (e.g., Zp).

3. Building PRGs in NC0 is a problem the draws intensives attention. See the discussion and
references in [JLS21, Setion 1].

The following problems (more accurately, their language version) are in NC1:

1. Binary addition (with carry bits) of n length n-bit binary strings.
1for more details, check this lecture note
2Note that some authors define subexponential size as ∩ε>0DTIME(2nε

), instead of 2o(n). Here, the “subexpo-
nential” means ∩ε>0DTIME(2nε

).

109

http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec3.pdf

2. Integer multiplication (of 2 n-bit numbers).

3. Integer division.

4. Inner product.

5. Matrix Multiplication (of 2 n× n matrices where each entry is of size n).

6. Parity checking: PARITY = {x : x has an odd number of 1s}

7. Evaluation of polynomial size Boolean formulas. We note that this result is non-trivial.
Actually, we can show that polynomial-size Boolean formulas are equivalent to NC1 (see this
lecture note).

The following problems (more accurately, their language version) are in NC2:

1. An of n× n matrix A where each entry of size n.

2. Determinant of n× n matrix.

3. Solving the linear system Ax = b, where A is a non-singular n×n matrix, b an n dimensional
column vector. (The algorithm is non-trivial. See this lecture notes.)

12.2.3 Branching Program
Theorem 12.2.1 (Barrington’s Theorem). (To do ...) ♢

12.3 Hierarchy: A Fresh Perspective

12.3.1 TM Hierarchy

Theorem 12.3.1: Time Hierarchy Theorem [HS65]

If f and g are time-constructible functions satisfying f(n) log f(n) = o(g(n)), then

DTIME(f(n)) ⊊ DTIME(g(n))

Proof. (The idea is to use the diagnization technique on a language involving simulating a universal Turing machine
for f(n) steps. It can be viewed as a scale-down version of the proof for HALT is undecidable.

For more details, refer to this lecture and P62 on Arora&Barak) ■

Theorem 12.3.1 (Non-Deterministic Time Hierarchy Theorem [Coo73]). If f and g are time-
constructible functions satisfying f(n+ 1) = o(g(n)), then

NTIME(f(n)) ⊊ NTIME(g(n))

♢

Proof. (to be done. P63 on Arora&Barak) ■

The following theorem is the space analogue to Theorem 12.3.1. Note that it does not have the
f(n) factor that appears in Theorem 12.3.1. This is essentially due to the fact that the universal
Turing machine consumes only S(n) space to simulate a S(n)-space machine.thm:space-hierarchy

110

https://www.cs.toronto.edu/~toni/Courses/Complexity2015/lectures/lecture7.pdf
https://www.cs.toronto.edu/~toni/Courses/Complexity2015/lectures/lecture7.pdf
http://pages.cs.wisc.edu/~jyc/02-810notes/lecture14.pdf
https://www.youtube.com/watch?v=J92OKdVxjYM&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=5

Theorem 12.3.2: Space Hierarchy Theorem [SHL65]

If f , g are space-constructible functions satisfying f(n) = o
(
g(n)

)
, then

SPACE
(
f(n)

)
⊊ SPACE

(
g(n)

)
Theorem 12.3.2 (Collapse of PH). PH has the following properties of collapse:

(1) For every i ≥ 1,
∑p

i =
∏p
i implies PH =

∑p
i .

(2) P = NP implies PH = P.

♢

Proof. We only need to prove the second item. The same argument extends to the first item i > 1.
Assume P = NP, we prove P = PH by induction on i that

∑p
1 ⊆ P, which also implies

∏p
i ⊆ P

as P is closed under complementation.
Assume

∑p
i−1 ⊆ P. For any L ∈

∑p
i , we immediately have

(x, u1) ∈ L′ ⇒ L′ ⊆
∏p
i−1 ⇒ L′ ∈ P,

where u1 is the variable quantified by the first quantifier (the first ∃). This means there exists a
TM M ′ the decides L′ in polynomial time. Also, by the definition of L and L′, it is easy to see that

x ∈ L⇔ ∃u1 s.t. (x, u1) ∈ L′

Then plugging M ′ into the RHS of the above gives:

x ∈ L⇔ ∃u1 s.t. M ′(x, u1) = 1,

which means L ∈ NP. Combining it with our assumption NP = P, we have L ∈ P. Since our choice
of L ∈

∑p
i is arbitrary, we thus proved

∑p
i ⊆ P, which finishes our induction step. ■

12.3.2 Circuit Hierarchy and Hard Functions
Theorem 12.3.3 (Existence of hard functions [Sha49]). For every n > 1, there exists a function
f : {0, 1}n → {0, 1} that cannot be computed by a circuit Cir of size 2n/(10n). ♢

Proof. (See Theorem 6.21 in [AB09].) ■

Similar to the time/space hierarchy theorems (Theorem 12.3.1 and 12.3.2), circuits also have a
hierarchy theorem.

Theorem 12.3.4 (Non-Uniform Hierarchy Theorem). For every functions T, T ′ : N → N with
2n/n > T ′(n) > 10T (n) > n,

SIZE(T (n)) ⊊ SIZE(T ′(n))

♢

Proof. (See Theorem 6.22 in [AB09].) ■

111

12.4 Complete Languages: NP, PSPACE, NL and PH
Around 1971, Cook and Levin independently discovered the notion of NP-completeness and gave
examples of combinatorial NP-complete problems whose definition seems to have nothing to do with
Turing machines. Soon after, Karp [Kar72] showed that NP-completeness occurs widely and many
problems of practical interest are NP-complete, and studied the relations among those problems by
Karp reduction.
Theorem 12.4.1: Cook-Levin Theorem [Coo71, Lev73]

Denote by SAT the language of all satisfiable CNF formulae and by 3-SAT the language of all
satisfiable 3-CNF formulae. Then

• SAT is NP-complete.

• 3-SAT ≤p SAT.

Proof. SAT is obviously in NP. So we only need to prove it is NP-hard by showing L ≤p SAT for
any L ∈ NP. There are 3 typical ways to do this:

(1) Sipser [Sip12] uses tableau argument.

(2) Arora&Barak [AB09] uses oblivious Turing machine.

(3) Prove CKT-SAT is NP-hard and CKT-SAT ≤p SAT.

For the first two items, in spite of the difference between the tools use there, these two methods
share the same idea of using locality to verify the computation of TMs.

The proof for 3-SAT ≤p SAT can be done by showing that each clause in a CNF can be
broken into small segments of 3-variable clauses, by introducing a new variable for each “breaking”
operation. For example, consider a 4-variable clause C = u1 ∨ u2 ∨ v3 ∨ v4. One can easily verify
the following is true:

C is satisfiable ⇔ (u1 ∨ u2 ∨ z) ∧ (z ∨ v3 ∨ v4) is satisfiable

Applying this (poly-time) transformation on each clause of a CNF gives a 3-CNF, finishing the
proof. ■

The first language shown to be PSPACE-complete is TQBF. This is a work of Stockmeyer and
Meyer [SM73].

Theorem 12.4.1 (PSPACE-Complete Language [SM73]). TQBF is PSPACE-complete, where TQBF
denotes the set of quantified Boolean formulae that are true. ♢

Proof. To prove that TQBF is in PSPACE, simply design a recursive algorithm (recursive on the
quantifiers) to evaluation the formula. Since space can be reused and for the feedback of each level
of recursion (the value need to be stored) is just a single bit, all the work can be done in poly space.

To prove that L ≤p TQBF for all L ∈ PSPACE, the main idea is to construct a Boolean formula
on the configuration graph of the decider machine for L. (Add details. Check P77 Arora&Barak...) ■

112

Theorem 12.4.2 (NL-Complete Language). Denote the language PATH as

PATH = {(G, s, t) | vertex t can be reached from s in the directed graph G },

Then the following holds:
• PATH is NL-complete

• PATH is NL-complete. (Immerman-Szelepcsényi Theorem [Imm88, Sze87])
♢

Before give the proof of Theorem 12.4.2, we remark that the proof actually can be modified to
give the following more general (and surprising) result:

Corollary 12.4.1 (Complete-Equivalence of NSPACE). For every space constructible f(n) > logn,
NSPACE

(
f(n)

)
= coNSPACE

(
f(n)

)
. In particular, NL = coNL. ♢

Proof for Theorem 12.4.2. As one would expect, the proof uses configuration graph of TM again.
(add details according to P80 and P82 of Arora&Barak ...) ■

We now discuss the case of PH. The following two theorem show an interesting facts: while
each

∑p
i does have its own complete language, the class PH does not, unless PH collapses.

Theorem 12.4.3 (Complete-Collapse of PH). If there exists a language L that is PH-complete,
then there exists an i such that PH =

∑p
i . ♢

Proof. The proof is obvious. ■

Theorem 12.4.4 (Complete Language for
∑p

i).
∑p

i SAT is
∑p

i -complete, where
∑p

i SAT denotes
the following special version of TQBF problem:∑p

i SAT = {ϕ | ∃u1, ∀u2, . . . , Qiui ϕ(u1, . . . , ui) = 1},

where ϕ is a Boolean formula, each ui is a vector of Boolean variables, and Qi is ∀ or ∃ depending
on whether i is even or odd respectively. ♢

12.4.1 Important Languages and Their Implications

• ANE3SAT, 3SAT, CKTSAT, 3-COL

• TAUTOLOGY, GNI, PRIMALITY, IND-SAT, Linear Programing, PRIMES, Factoring (de-
cisional version): See this lecture.

• ST-PATH: for undirected version, Omer Reingold showed a log(n)-space solution; for the
undirected version, it is currently unknown whether log(n)-space solutions are possible. See
this lecture. Since we know that ST-PATH can be solved in O(log(n))-space (see this vedio).
Also, this problem is NL complete—it can be solved in non-deterministic O(log(n))-space.
This also implies that it can be solved in O(log2(n))-space, by Theorem 12.5.1.

• Here are some P-complete language w.r.t. log-space reduction: HornSAT, Linear Program-
ming, Circuit Evaluation. They have the following implications:

113

https://www.youtube.com/watch?v=a4mMF5Hyspg&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=15
https://www.youtube.com/watch?v=DAJm-aaVPD0&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=16
https://www.youtube.com/watch?v=JsWlqpT5Ds8&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=18&t=696s

– C ∈ L⇔ P ⊆ L
– C ∈ NL⇔ P ⊆ NL
– C ∈ NC ⇔ P ⊆ NC

• ExactClique, SmallestCirccuit: it is unclear whether we can put these two languages in NP
or coNP. But it is easy to see that ExactClique is in

∑p
2 and SmallestCircuit is in

∏p
2. See

this lecture.

12.5 Time-Space Trade off
You can trade the size of the TM for its efficiency.

Theorem 12.5.1 (Speed-Up Theorem [HS65]). if a function f is computable by a TM M in time
T (n) then for every constant c ≥ 1, f is computable by a TM M ′ in time T (n)/c, where M ′

possibly has larger state size and alphabet size than M . ♢

Remark 12.5.1. Note that [HS65] is a very important paper. It proved the first (but a little relaxed)
version of the existence of efficient Universal Turing machine (Theorem 12.1.1), the above speed-up
theorem, and the time-hierarchy theorem for deterministic computation. Interestingly, it seems to
be this paper that starts the use of the term “computation complexity”.

For the trade off between time complexity and space complexity, the following theorem may
represents the only non-trial result we currently have. This is rather unsatisfactory since this
theorem is not surprising at all.

Theorem 12.5.2. NSPACE(S(n)) ⊆ DTIME(2O(S(n))) ♢

Proof. (The proof use the configuration graph of Turing machines. P72 on Arora&Barak.)
(This should be simple. Do it soon...) ■

The following theorem reveals the relation between non-deterministic and deterministic power
w.r.t. space complexity. It follows an immediately corollary that NPSACE = PSPACE.
Theorem 12.5.1: Savitch’s Theorem [Sav70]

For any space-constructible function f : N→ N with f(n) ≥ log(n), the following holds

NSPACE
(
f(n)

)
= PSPACE

(
(f(n))2

)
Proof. The proof for this theorem follows closely that of 12.4.1. (See P78 of Arora&Barak...) ■

(talk about the trade-off for SAT. P90 of Arora&Barak)
The following theorem reveals that space is a more precious resource than time. This is be-

cause, together with space hierarchy theorem (Theorem 12.3.2), it implies that TIME
(
t(n)

)
⊊

SPACE
(
t(n)

)
.

114

https://www.youtube.com/watch?v=mrBBguscM6Y&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=24&t=44s

Theorem 12.5.2: [HPV77]

TIME
(
t(n)

)
⊆ SPACE

(t(n)
log(t(n))

)
Proof. See this lecture. ■

12.6 Relations among Complexity Classes
(NL vs L. ST-PATH is NL complete. Meanwhile, it can be solved in log2(n) space. By space hierarchy theorem

(Theorem 12.3.2), L is a proper subset of NL.
Theorem 12.6.1: L, NL and P

L ⊂ P, and NL ⊂ P.

Proof. To prove that L ⊂ P: there are only 2O(log n) many different configurations of a decider for a language in L.
These can be brute-forced in polynomial time.

To prove that NL ⊂ P: writing down all the 2O(log n) possible configurations of a non-deterministic log space
machine. We want to know whether there is a path form the starting config to the accepting config. This is exactly
the PATH problem, which can be sovled in polynomial time. ■

Is L or NL a proper subset of P? If the answer is unknown, what is the critical language (known in NL or L, but
not known in P)?

)

Theorem 12.6.2: Levin Recution

If P = NP, then for every L ∈ NP and every x ∈ L, there exists a polynomial-time TM M such
that RL(x,M(x)) = 1.

Proof. The proof consists of two steps:

(1) Show such a machine for SAT.

(2) For any L ∈ NP, show a Levin reduction to SAT.

For the 2nd item, we note that the reduction used in the proof of Cook-Levin theorem (Theorem
12.4.1) is already a Levin reduction. So we only need to do the 1st item.

Assume we have a decider for a SAT. We can then do the following for each variables in order:
for the i-th variable vi, test whether ϕ is still satisfiable with assignment vi = 1 and vi = 0 to figure
out the correct value for vi. If there are n variables in total, such test costs 2n calls to the assumed
SAT decider, thus can be done in poly time. ■

Theorem 12.6.1. P = NP⇒ EXP = NEXP ♢

Proof. Hint: use “padding” argument. ■

The following result, Ladner’s theorem, shows a surprising fact: if P 6= NP, there must be some
language lying in between P and NP-complete languages.

115

https://www.youtube.com/watch?v=-HBqDL24Vb4&list=PLm3J0oaFux3b8Gg1DdaJOzYNsaXYLAOKH&index=3

Theorem 12.6.3: Ladner’s theorem—NP intermediate languages [Lad75]

Suppose that P 6= NP. Then there exists a language L ∈ NP \ P that is not NP-complete.

Proof. (to be done. P64 on Arora&Barak) ■

Theorem 12.6.4: Manhany’s Theorem

if any “sparse language” is NP-Complete, then P = NP .

Proof. See this lecture. ■

Theorem 12.6.2. PH ⊆ PSPACE. Morover, if PH ⊊ PSPACE, PH collapses to
∑p

i for some i. ♢

Proof. The first part is obvious. The second part follows as a simple corollary of Theorem 12.4.3
plus Theorem 12.4.1. ■

We next show a seemingly straightforward result. However, its proof is non-trivial and gives
another approach to prove Cook-Levin Theorem (Theorem 12.4.1). We give more details in Remark
12.6.1

Theorem 12.6.3. P ⊊ P/poly. ♢

Proof. This proof uses oblivious Turing machine. There can at most be polynomially many snap-
shots of a poly time oblivious Turing machine. And the transition between each two adjacent
snapshots can be verified by a constant size circuit due to the locality of such TM. Thus, in total,
the computation can be done by a poly size circuit that sequentially verifies the adjacent snapshots.

To see this subset relation is proper, consider the unary halting problem. ■

Remark 12.6.1. The idea of the proof already implies that CKT-SAT is P/poly-hard. If we can show
CKT-SAT ≤p 3-SAT, we then have another proof for Cook-Levin theorem. Actually, converting a
circuit to 3-CNF is easy with the following rules to convert each type of gate:

• AND Gate: z1 = z2 ∧ z3 ⇔ (z1 ∨ z2 ∨ z3) ∧ (z1 ∨ z2 ∨ z3) ∧ (z1 ∨ z2 ∨ z3) ∧ (z1 ∨ z2 ∨ z3)

• OR Gate: z1 = (z2 ∨ z3) ⇔ (z1 ∨ z2) ∧ (z1 ∨ z3) ∧ (z1 ∨ z2 ∨ z3)

• NOT Gate: z1 = z2 ⇔ (z1 ∨ z2) ∧ (z1 ∨ z2)

• For output wire y of CKT-SAT, add (y) as the 3-CNF clause.

We have already seen that P ⊊ P/poly in Theorem 12.6.3. The following result of Karp and
Lipton [KL82] provides some evidence for the conjecture that P 6= NP.

Theorem 12.6.4 (Karp-Lipton Theorem [KL82]). NP ⊆ P/poly implies PH =
∑p

2. ♢

Proof. According to Theorem 12.3.2, it is sufficient if we can show that NP ⊆ P/poly implies
∏p

2 ⊆∑p
2. To do that, it suffices to show

∏p
2SAT ∈

∑p
2.

Recall that

ϕ ∈
∏p

2SAT ⇔ ∀u1 ∈ {0, 1}n, ∃u2 ∈ {0, 1}n ϕ(u1, u2) = 1. (12.1)

116

https://www.youtube.com/watch?v=zgVOVVcuKp8&list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2&index=14

Define the following language for tuples of Boolean formula ϕ and a variable u1 ∈ {0, 1}n:

L1 = {(ϕ, u1) | ∃u2 ∈ {0, 1}n s.t. ϕ(u1, u2) = 1}

Obviously, L1 ∈ NP. Since we assume NP ⊆ P/poly, there exists a poly-size circuit family {Cn}n∈N
deciding L1. In another word, {Cn}n∈N is a (family of) decider for the SAT problem of formulea of
the form ϕ(u1, ·).

Recall that in the proof of Theorem 12.6.2, we showed how to efficiently construct a witness
extractor from the decider of SAT. Thus, there exists a poly-size circuit family {C ′n}n∈N such that
ϕ
(
u1, C

′
n(ϕ, u1)

)
= 1 if (ϕ, u1) is in L1 (i.e. ϕ(u1, ·) is satisfiable). Note that if {C ′n}n∈N is of

size p(n), we can describe C ′n using a binary string of size q(n) = poly
(
p(n)

)
, which is also some

polynomial on n.
We then denote the following language:

ϕ ∈ L2 ⇔ ∃w ∈ {0, 1}q(n), ∀u1 ∈ {0, 1}n M ′(ϕ, u1, w) = 1 (12.2)

where M ′ is a TM such that on input (ϕ, u1, w), it interprets w as the description of a C ′n and
outputs 1 iff ϕ

(
u1, C

′
n(ϕ, u1)

)
= 1.

Obviously, L2 ∈
∑p

2. Morover, with a little thinking, one can see that the expressions (12.1)
and (12.2) essentially desribe the same language, i.e. L2 =

∑p
2SAT. Thus,

∏p
2SAT ∈

∑p
2. This

closes our proof. ■

A similar result to Theorem 12.6.4 (also appeared in [KL82], but was attributed to Meyer) can
be proved for EXP.

Theorem 12.6.5 (Meyer’s Theorem [KL82]). EXP ⊆ P/poly implies EXP =
∑p

2. In particular,
EXP ⊆ P/poly implies P 6= NP. ♢

Proof. (It again uses oblivious Turing and snapshots. Do it later ... P102 Arora&Barak.) ■

117

Chapter 13
Quantum Complexity Theory

13.1 The Basics
Xiao!Xiao: Remark that unlike BPP, BQP (and QMA) is defined as a class of promise languages. There

are several reasons why people prefer to do it in this way:

• The real problems appear in physics (or those physicists care about) are usually promise
problems.

• The promise BQP has complete problems. Probably the most famous one is solving linear
equation systems (or inverting a given matrix). But it seems hard to imagine a complete
problem for BPP (or BQP when defined without promise).

Second Nature for Quantum Complexity:

• BQP ⊆ EXP: this is easy to see. Just use exponential time to simulate quantum computation.

• BQP ⊆ PSPACE: this is also not hard to see—write down the computation, and then use
“Feynman’s path integral” to convert the computation to the summation of exponentially
many complex numbers, which can be computed in polynomial space.

• BQP ⊆ QMA: to do...

• BQP ⊆ PP: This is not that obvious. There are three ways to show it.

1. one can show QMA ⊆ PP via the so-called “strong error reduction”, the claim then
follows from the fact that BQP ⊆ QMA;

2. BQP ⊆ QMA ⊆ PQMA[log]. Then, using the “hierarchical voting” technique, one can
show that PQMA[log] ∈ PP

3. BQP ⊆ PostBQP = PP.

• QIP = PSPACE. This is established by the breakthrough work of [JJUW10].

• QIP = QIP(3): established by [KW00].

• Note that if QMA = PP, then PH = PP, which is unlikely to happen.

• There exists a quantum oracle U such that QMAU 6= QCMAU (by [AK07]). In contrast,
finding a classical oracle A such that QMAA 6= QCMAA remains a notorious open problem to
this day. The following is quoted from [Aar16, Section 5.2]: “Very recently, Fefferman and
Kimmel [FK18] presented interesting progress on this problem. Specifically, they separated
QMA from QCMA relative to a classical oracle of an unusual kind. A standard classical oracle
receives an input of the form |x, y〉 and outputs |x, y ⊕ f(x)〉, whereas theirs receives an input
of the form |x〉 and outputs |π(x)〉, where π is some permutation. Furthermore, their oracle
is probabilistic, meaning that the permutation π is chosen from a probability distribution,
and can be different at each invocation.”

118

• The situation for BQP/poly vs BQP/qpoly is very similar to that above case of QMA vs QCMA.
That is, there exists a quantum oracle U such that BQP/polyU 6= BQP/qpolyU using a proof
analogous to [AK07]); but it remains open whether there is a classical oracle separating
BQP/poly and BQP/qpoly.

• PostBQP = PP by [Aar05].

• BQP/qpoly ⊆ PostBQP/poly = PP/poly: established by [Aar04].

• BQP/qpoly ⊆ QMA/poly by [AD10]. Namely, a quantum computer with polynomial-size quan-
tum advice can be simulated by QMA with polynomial-size classical advice). Indeed, some-
thing stronger is true: polynomial-size trusted quantum advice can be simulated using
polynomial-size trusted classical advice together with polynomial-size untrusted quantum
advice.

• QMA/qpoly ⊆ BQPSPACE/qpoly ⊆ PostBQPSPACE/poly = PSPACE/poly, established by [Aar06].

The following Figure 13.1 is a informative figure taken from [Aar16, Figure 5.1].

Figure 13.1: Some relevant complexity classes, partially ordered by known inclusions

13.2 Hidden Subgroup Problem and Friends
Xiao!Xiao: alk about the hidden subgroup problem (HSP) and its variants ([KKNY05, Page 5] contains

a good introduction):

• HSP is easy on Abelian groups [Kit96]: Use generalized quantum Fourier transform (QFT).
But currently there is no known efficient algorithm to solve this problem on non-Abelian
groups. Two types of non-Abelian groups on which HSP is hard are symmetric groups and
dihedral groups.

• On symmetric groups, the problem is referred to as SHSP. It can be reduced to the problem
that given a quantum state of a particular form, try to find the hidden subgroup H. A special
case of the latter problem can be further reduced to the DIST problem formalized in [HRT03].

119

• As argued in [KKNY05], the DIST problem is closed related to the QSCDff problem, based
which [KKNY05] builds a restricted form of PKE. These problem is closed related to the
graph isomorphism (GI) problem and the graph automorphism (GA) problem (see this blog
article for a good survey of GI).

• On symmetric groups, the problem is referred to as DHSP. It can be reduced to the problem
of dihedral coset problem (DCP), which is known to be at least as hard as LWE. In the special
case of the group ZN where N = 2n, DCP can be reduced to its distinction version called
DCSP.

120

https://dabacon.org/pontiff/2010/08/04/reading-list-graph-isomorphism/
https://dabacon.org/pontiff/2010/08/04/reading-list-graph-isomorphism/

Chapter 14
Proof Systems: Bridging Crypto and Com-
plexity Theory

14.1 PCP Theorem

Theorem 14.1.1: The PCP Theorem

NP ⊆ PCP1, 1
2
[O(logn), O(1)].

14.1.1 Exponential-Size PCP

Linear PCP. The first step is to construct a linear PCP (LPCP) for the (NP complete) lan-
guage of quadratic equation satisfiability. More concretely, one can show that QUAD-EQ ∈
LPCP1, 3

4
[n2, O(n +m), 4], where n is the number of variables and m is the number of equations.

The core idea in this proof is the design of a tensor product. Namely, if the verifier is given a oracle
claimed to be a tensor product x⊗ x between the same vector, it should be able to check it.

Exponential-Size PCP for NP. LPCP guarantees that once the verifier gets access to linear
oracle, soundness is guaranteed. To build the final PCP by employing the LPCP verifier, we now
need to enforce the prover to use a linear oracle. Put it in another way, we need to develop a
method for the verifier for linearity testing: if the prover gives a non-linear function as the oracle,
the verifier must catch it with good probability. Assume we have such a linearity test, then the
PCP can be built in the following way:

• The verifier performs the linearity test [BLR90] to check that the oracle is really a linear
function.

• If the last check passes, the verifier can safely assume that the oracle is a real linear function.
It then simply runs the LPCP verifier;

The soundness εPCP of this PCP is upper bounded by max{εLPCP , εLIN}, where εLIN is the soundness
error of the linearity test.

However, the are two caveat when we implement the above idea:

1. Ideally, we want to have a linearity test such that if the oracle is not a linear function, the
verifier accepts with probability < εLIN . But this is impossible unless the verifier checks the
whole true table of the function. For example, we can have a non-linear function that differs
with some linear function on only a single input. Thus, to ensure the verifiers’ efficiency, we
have to tolerate some slackness. The linearity test we will have can only guarantee that: if a
function is far (say 10%-far, in terms of hamming distance of the truth table) from any linear

121

function, the verifier can be fooled with probability < εLIN .1 This introduces some “middle
land” to the above soundness analysis: a malicious prover can generate a non-linear function
that is only < 10%-far from some linear function. Nevertheless, this middle-land case can be
handled by union bound, introducing only a q · 1

10 additional error term to εPCP , where q is
the number of the verifier’s queries in the whole execution. Rigorously, assuming that there
is a linear function 〈α, ·〉 that is 10%-close to the maliciously generated oracle π̃, when we run
the LPCP verifier w.r.t. π̃, we have:

Pr
[
V π̃

LPCP(x) = 1
]
≤ Pr

[
V π̃

LPCP(x) = 1
∣∣∣ All queries land in

good locations

]
+ Pr

[
At least one LPCP query
lands in bad locations

]
= Pr

[
V
⟨α,·⟩

LPCP(x) = 1
∣∣∣ All queries land in

good locations

]
+ Pr

[
At least one LPCP query
lands in bad locations

]
≤ εLPCP + q · 1

10
(14.1)

However, the above bound is not informative if q · 1
10 is close (or equal) to 1. This can

be fixed by repetition: if we repeat each query of the underlying LPCP t times (with fresh
randomness), we can drive the term in Inequality (14.1) down to εLPCP + q · 1

10t .

2. The second caveat is about Inequality (14.1). The 1
10 terms is due to the (ideal-case) fact

that the (linear-PCP) verifier’s query is uniformly distributed over all the positions. However,
in the underlying linear PCP, the verifier’s query is not uniformly. But this can be fixed by
self-correction: every time the VLPCP want to query a position z, it samples a r uniformly at
random, and queries both position r and z + r. Then it computes π(z) = π(r) + π(r + z)
(due to the linearity of the linear PCP π). Now we can safely say that both r and r + z are
random queries. However, note that soundness is broken if one of these two queries lands in
bad locations, which happens with probability 2

10 (if 1
10 of the oracle is bad). Thus, with this

self-correction (and the aforementioned repetition), the term in Inequality (14.1) should be
εLPCP + q · 2

10t .

Remark 14.1.2: On the BLR Linearity Test

The BLR test is very simple: to test the linearity of a function f on {0, 1}n, just pick x, y $←− {0, 1}n
and check if f(x) + f(y) = f(x + y). All the hard work lies in its soundness analysis. The
original [BLR90] paper showed that Pr

[
V f

LIN = 0
]
≥ min{29 ,

δ(f)
2 }, where δf is the fractional

hamming distance between f and the closest linear function to it. Their proof used only elementary
probability theory argument in an elegant way. Later, relying on tools from Boolean Fourier
Analysis, [BCH+95] improved the soundness analysis of BLR test by showing that Pr

[
V f

LIN = 0
]
≥

δ(f). Put it in another way, if we use BLR test with soundness error εLIN , we can make sure that
the target function is εLIN-close to some linear function.

On the Soundness Error. The above analysis says that: for π̃ of a false statement x /∈ L,

• if π̃ is εLIN-far from any linear function, V will accept (mistakenly) with probability ≤ εLIN
(due to Remark 14.1.2); (note that here we only consider the soundness error of the linearity

1For the linearity test we will use, this error is actually the inverse of the “slackness” factor: if a function is εLIN -far
from linear, the verifier can be fooled with with probability < εLIN . See Remark 14.1.2.

122

test. This is because if π̃ manages to pass the linearity test, the LPCP test is not reliable at
all. To the extreme, if π̃ is εLIN-far from any linear function, the V π̃

LPCP(x) may accept with
probability 1.)

• if π̃ is εLIN-close from some linear function (the linearity test is not reliable), the above analysis
tells us that V will accept (mistakenly) with probability ≤ εLPCP + q · 2 · εtLIN .

Thus, the soundness error of the above PCP is εPCP ≤ max{εLIN , εLPCP + q · 2 · εtLIN}.

On the Complexity. The above analysis is a generic compiler from LPCP to PCP. It shows that

LPCP1,εLPCP
[ℓ, r, q] ⊆ PCP1,εPCP

[2ℓ, 2ℓ+ 2qtℓ, 3 + qt], where εPCP ≤ max{εLIN , εLPCP + q · 2 · εtLIN}

We can set εLIN = 1
2 and set t = O(log q) such that q ·2 ·εtLIN is an arbitrarily small constant, e.g. 1

100 .
Since we know that QUAD-EQ ∈ LPCP1, 1

2
[poly(n), poly(n), O(1)], the above parameter setting gives

us that:
NP ⊆ PCP1, 1

2
+ 1

100
[exp(n), poly(n), O(1)].

As a historical remark, this exponential size PCP with constant number of queries is the inner
PCP in the work [ALM+92, ALM+98].

14.1.2 Polynomial-Size PCP

14.2 PCP of Proximity

Resources

• The first work that formalized PCPP was [BGH+04], where PCPP was defined w.r.t. pair
languages. It also contains a discussion about pair languages vs standard languages, and
PCP vs PCPP.

• [DK12] contains the same formalism as in [BGH+04]. It indicates that in the [BGH+04]
construction, the PCPP proof oracle can be constructed efficiently.

• Section A.5.1 of [GOSV14] also contains a clean formalism of PCPP. It basically summarized
the things in [BGH+04] and [DK12].

• [IW14] has a informal description of PCPP w.r.t. standard NP languages. This is the only
definition I found that did not use pair languages.

14.3 Interactive Proofs and Arthur-Merlin Games
(A good starting point for this topic is the introduction of [GS86].)

14.3.1 Multi-Prover Interactive Proofs

123

Chapter 15
Cryptographic Reductions and Impossibility Re-
sults

15.1 The [RTV04] Taxonomy
Let us first present the formal definition for cryptographic primitives.
Definition 15.1.1: Cryptographic Primitives [RTV04]

A primitive P is a pair (FP , RP), where FP is a set of functions f : {0, 1}∗ 7→ {0, 1}∗ and RP is a
relation over pairs (f,M) where f ∈ RP and M is a (possibly inefficient) Turing machine.

• We say that a function f implements P if f ∈ FP . Additionally, we say that a function f
efficiently implements P if f ∈ FP and f is computable by a PPT machine.

• A machine M P -breaks the implementation f ∈ FP if the pair (f,M) ∈ RP . A secure
implementation of P is a function f ∈ FP such that no PPT machine P -breaks f .

We say that a primitive P exists if there exists an efficient and secure implementation f of P .

We next define 3 most common reductions and explain the relation among them. In the follow-
ing, we will use the following two (equivalent) phases alternatively:

• a reduction from P to Q;

• a construction of Q from P .
Both of them mean that the existence of P (the base primitive) implies the existence of Q (the target
primitive). (Note that the role of P and Q as presented here is reversed compared to [RTV04].
This is inconsistent with [Yer11, BBF13])

15.1.1 Fully-Black-Box Reductions
Definition 15.1.2 is called “fully-black-box” because it uses the (possibly inefficient) adversary Adv
breaking Q in a black-box way to break P . In particular, S must work for any such adversary, even
an inefficient one. Actually, most of known constructions in cryptography satisfy this very strong
requirement.
Definition 15.1.2: Fully-Black-Box Reductions [RTV04]

There exists a fully-black-box reduction from primitive Q = (FQ, RQ) to primitive P = (FP , RP),
if there exist PPT oracle machines G and S such that:

• Correctness: For every implementation f ∈ FP , Gf ∈ FQ (i.e., Gf implements Q);

• Security: For every implementation f ∈ FP and every (possibly inefficient) machine Adv,
if Adv Q-breaks Gf , then SAdv,f P -breaks f .

124

On Uniformity. Definition 15.1.2 only captures uniform fully-black-box reductions. The rea-
son is the S in the definition is by default a uniform (oracle) Turing machine. However, many
cryptographic reductions are actually non-uniform, e.g., [GMR89, ILL89, GMW91, GO94, LPV08,
GKP18]1. To capture non-uniform reductions, a naive attempt is to require S to be a non-uniform
machine. However, this does not quite solve the problem because, in non-uniform crypto reduc-
tions, the non-uniform advice may depend on the adversary; but the S (even if it is non-uniform)
in Definition 15.1.2 is universal for all Adv. There is a paper by Chung et al. [CLMP13] trying to
address this issue.

15.1.2 Semi-Black-Box Reductions
Semi-black-box reductions were proposed with the hope to capture reductions that could use the
code of the adversary.2

Definition 15.1.3: Semi-Black-Box Reductions [RTV04]

There exists a Semi-black-box reduction from primitive Q = (FQ, RQ) to primitive P = (FP , RP),
if there exist PPT oracle machines G such that:

• Correctness: For every implementation f ∈ FP , Gf ∈ FQ (i.e., Gf implements Q);

• Security: For every implementation f ∈ FP , if there exists a PPT oracle machine Adv such
that Advf Q-breaks Gf , then there exits a PPT oracle machine S such that Sf P -breaks f .

Fully-Black-Box vs. Semi-Black-Box. First, note that full-black-box reductions are also semi-
black-box ones. We claim it in Lemma 15.1.4, whose proof is left as an exercise (see the proof of
Lemma 15.1.7 for an example). They have the following differences:

• In semi-black-box reductions, the security reduction S no longer gets the Q-adversary as an
oracle. But note that S can depend on Adv. Indeed, since Adv is PPT now, S can make
non-black-box use of it, i.e., use the code of Adv (except for its oracle part f).

• Different from Definition 15.1.2, the Adv in Definition 15.1.3 is only a PPT machine. So it
may no longer be able to evaluate the possibly inefficient implementation f . Thus f is given
to Adv as an oracle in Definition 15.1.3.

Lemma 15.1.4:

If there exists a full-black-box reduction from Q to P , then there also exists a semi-black-box
reduction from Q to P .

15.1.3 Relativizing Reductions (and “Two-Oracle” Reductions)
Relativizing reductions are an important type of reduction. They generalize fully-black-box reduc-
tions in the sense that every fully-black-box construction is also a relativizing one (Lemma 15.1.7).
Thus, impossibility results for relativizing constructions are stronger. Indeed, several works (e.g.,[IR89,

1Interestingly, the non-uniform proof in [ILL89] was eventually made uniform by [Hås90].
2Actually, the notion of semi-black-box does not quite achieve this goal. See the weakly-black-box notion and

related comments in [RTV04]).

125

Sim98, GKM+00]) proved impossibility results for fully-black-box constructions by ruling out rel-
ativizing constructions. There are also impossibility results for fully-black-box reductions without
ruling out relativizing reductions, e.g., [HR04, Haj18, HY20].3

We remark that there are two ways to formalize the existence of primitives relative to some
oracle (thus two ways to define relativizing reductions). But Lemma 15.1.7 holds w.r.t. both versions
of relativizing reductions.
Definition 15.1.5: Existence relative to Oracle

There are two ways to define existence relative to an oracle:

1. A primitive P is said to exist relative to O if there is an f ∈ Fp which can be implemented
by a PPT oracle machine with oracle O, and there is no PPT oracle machine AdvO that
P -breaks f .

2. This is identical to the above except that AdvO can be computationally-unbounded, but
restricted to polynomially many oracle queries.

Definition 15.1.6: Relativizing Reductions [RTV04]

There exists a relativizing reduction from primitive Q = (FQ, RQ) to primitive P = (FP , RP), if for
any oracle O : {0, 1}∗ 7→ {0, 1}∗, if P exists relative to O then so does Q. (See Definition 15.1.5.)

Lemma 15.1.7: Fully-Black-Box ⇒ Relativizing [RTV04]

If there exists a full-black-box reduction from Q to P , then there also exists a relativizing reduction
from Q to P .

Proof. Fix any oracle O w.r.t. which P exists. That is, there is a PPT-computable f such that
fO implement P , and no PPT (resp. computationally-unbounded) oracle machine AdvO making
polynomially-many oracle queries can P -break fO. We remark that the oracle machine Adv could
be either PPT or computationally-unbounded (see Definition 15.1.5); as long as it only makes
polynomially-many oracle queries to O, this proof will work.

If there is a fully-black-box reduction from Q to P , then it follows from Definition 15.1.2 that
there exists PPT oracle machines G and S such that

1. there is a PPT oracle machine G such that GfO implements Q;

2. if there is a (potentially inefficient) Adv Q-breaks GfO , then SAdv,fO
P -breaks fO.

To finish this proof, we only need to show that there is no PPT (resp. computationally-unbounded)
oracle machine ÃdvO

that Q-breaks GfO while making only polynomially many queries to O.
Assume for contradiction that there exits such an ÃdvO

. It then follows from Item 2, by treating
ÃdvO

as the Adv there, that SÃdvO
,fO

P -breaks fO.

3This is because these works use the so-called “two-oracle” technique, which does not necessarily imply relativizing
separation. It seems that two-oracle separation and relativizing separation are in comparable (but I haven’t thought
about this formally), though both of them imply fully-black-box separation, which is cryptographers’ real concern.

126

Remark 15.1.1. We emphasis that the ÃdvO
can be treated as the Adv in Item 2 because the Adv

in Definition 15.1.2 could be computationally-unbounded. In contrast, this is not true for semi-
black-box reduction (Definition 15.1.3). Therefore, the current proof cannot be used to show that
semi-black-box constructions are also relativizing constructions.

Now, observe that the machine SÃdvO
,fO can be interpreted as an oracle machine S̃O:

• S̃O execute the code of SÃdv(·),f (·) internally. It forward the oracle queries made by Ãdv(·) and
f (·) to its oracle O.

Also, note that if ÃdvO
is PPT (resp. conputationally-unbounded) making polynomially-many

queries to O, then S̃O is PPT (resp. conputationally-unbounded) making polynomially-many queries
to O. This contradicts our assumption that no PPT (resp. computationally-unbounded) oracle
machine AdvO can P -break fO while making only polynomially-many oracle queries. ■

On the Efficiency of the Relativizing Adversary. Remark 15.1.1 explains why Semi-BB re-
duction may not be a relativizing one. This is why the FBB impossibility in [IR89] is unconditional,
but their Semi-BB impossibility is conditioned on P 6= NP.4

Actually, the unconditional FBB impossibility in [IR89] did not rely on the fact that Lemma 15.1.7
holds w.r.t. inefficient relativizing adversaries. Their instead took the following approach: they
first proved their Semi-BB impossibility, which ensures that the adversary is efficient by assum-
ing P = NP. Then, they observed that their proof techniques relativizes. Therefore, the same
results holds w.r.t. the new oracle O′ = (O,PSPACE), where O is the original oracle they used in
the Semi-BB impossibility proof. Now, the PSPACE oracle embedded in O′ could take care of all
the inefficient operations for the adversary. Thus, they reached the same contradiction using only
efficient adversaries, in the oracle world where the oracle is O′.
Some Comments on Reductions

Another paradigm appeared in [GGKT05] (the merged version of [GT00, GGK03]). Their ap-
proach can be demonstrated by their separation of “efficient” PRG from TDP. To show that,
they argue in the following way: Given a length-preserving random oracle, if an “efficient” PRG
can be constructed, then P 6= NP. They argued that such a result ruled out the weak-black-box
reduction from “efficient” PRG to TDP, which is a stronger impossibility result than fully/semi
black-box separation. I have some questions:

• How to argue formally that their claim rules out the weak black-box separation?

• Is it true that they even rule out some reduction that is more general than weak black-box
reduction. Is there a formal definition/name for this more-general reduction?

• Is it true that Barak’s non-black-box ZK uses a weak-black-box reduction, but not a semi-
black-box reduction?

4It is also worth noting that [RTV04] managed to remove this computational assumption for the semi-black-box
case of [IR89].

127

15.2 Polynomial-Time Reductions with Expected Polynomial-Time
Adversaries

The Problem. To prove the security of cryptographic objects, we usually need to conduct polyno-
mial time reductions. For example, consider a primitive A that is constructed (solely) from another
primitive B which is secure by assumption (for concreteness, think of A as a commitment scheme
and B as an one-way permutation). To prove that A achieves some desired security property, the
canonical approach is to assume, for the sake of contradiction, that there exists a probabilistic
polynomial-time (PPT) adversary Adv, which is able to break the target security property of A.
Then, the proof is done if one can show an efficient way (i.e. the “reduction”) to make use of Adv
to break the security of B.

Everything is good if the security of B holds against the class of adversaries for which we try to
prove the security of A. For example, assume that B is secure against all PPT adversaries. Then
the security of A against all PPT adversaries will be established once we can finish the reduction
in PPT. This type of arguments extends to other class of adversaries. For example, similar results
hold for the class of sub-exponential adversaries, with the reduction being sub-exponential time.

But things become a little bit tricky if we want to prove the security of A against a class of
adversaries which is stronger than the ones that are ruled out by the security of B. This would not
be a reasonable concern if the power of the two classes of adversaries differs too much. Indeed, no
one will hope to construct sub-exponentially secure commitments from one-way permutations that
are only polynomially secure. However, this difference on power could sometimes be so small that
we have to pay attention. One such setting is:

B is secure against PPT adversaries, but we want to prove the security of A against
expected PPT adversaries.

The above setting appeared in the literature quite often, e.g., Claim 3 in [GK96], Lemma 4.3 in
[BJY97], and Proposition 3.3.30 in Feige’s thesis [Fei90]5.

The trick is to employ an interesting combination of averaging argument and Markov’s inequal-
ity. Though the papers mentioned above are already very well-written with enough details, there
are still several steps that may not be straightforward to a beginner. Thus, I decided to take a note
here to present a thorough derivation.

The Solution: truncating the execution. To illustrate the core of the this technique, I will
show the following lemma about OWFs (though all the aforementioned papers are about zero-
knowledge). One can easily extend this argument to proper contexts as he/she needs.
Lemma 15.2.1:

Assume f is an OWF against PPT adversaries. Then it is also an OWF against expected PPT
adversaries.

Proof. In this proof, I will gloss over the details that can be inferred from the context easily, such
as the length of the pre-images/images of f .

Assume, for the sake of contradiction, that there is an expected PPT machine Adv that breaks
the one-wayness of f . We will build a machine Adv′ that runs in strictly polynomial time and (still)
breaks the one-wayness of f .

5Noticeably, [Fei90] devoted the whole Chapter 3 to this issue, presenting a beautiful and thorough discussion.

128

Let λ denote the security parameter. W.l.o.g., assume that the expected running time of Adv
is the polynomial T (λ). It breaks the one-wayness of f , which means that there exist a polynomial
P (λ) such that for infinitely many λ ∈ N, Adv inverts f with probability at least 1

P (λ) . In the
remaining part of this section, I will drop λ from T (λ) and P (λ) to make the presentation succinct.

The machine Adv′ is constructed by “truncating” the executions of Adv that go beyond 2TP
steps. In the following, we argue that Adv′ also breaks the one-wayness of f .

First, it follows from Markov’s inequality that the truncated executions count for only a small
portion. More formally, let random variable X denote the running time of Adv. According Markov’s
inequality, we have:

Pr[X ≥ 2TP] ≤ 1

2P
.

Then, by an averaging argument, one can show that in the “un-truncated” executions, Adv (the
de facto Adv′) can still invert f with probability at least 1

2P . Formally, let the Win(λ) denote the
even that Adv wins in the security game for the one-wayness of f , with security parameter set to
λ. We then have:

Pr[Win] = Pr
[
Win|X < 2TP

]
· Pr

[
X < 2TP

]
+ Pr

[
Win|X ≥ 2TP

]
· Pr

[
X ≥ 2TP

]
We now prove that the above equation implies that

Pr
[
Win|X < 2TP

]
≥ 1

2P
. (15.1)

Assume for contradiction that Pr
[
Win|X < 2TP

]
< 1

2P . Continuing the above equation with
this assumption, we have:

1

P
= Pr[Win] < 1

2P
· Pr

[
X < 2TP

]
+ Pr

[
Win|X ≥ 2TP

]
· 1

2P

≤ 1

2P
· 1 + 1 · 1

2P

=
1

P
,

which implies a contradiction as it says 1
P < 1

P . Thus, Equation (15.1) holds. This finishes our
proof as Pr

[
Win|X < 2TP

]
is exactly the probability that Adv′ wins in the security game. ■

When to NOT use the truncating argument. I want to highlight a restriction of the above
“truncating” argument: the winning probability of Adv will drop by a constant fraction. In the
above example, the winning probability of Adv is ≥ 1

P , but the winning probability of Adv′ can only
be shown to be ≥ 1

2P . While this is usually not a problem in crypto reductions, this does restrict
its applicability in analyses for ZK simulators or knowledge extractors.

For example, to prove ZK property, we usually construct a simulator Sim that runs in expected
polynomial time, and outputs a simulated view indistinguishable from (in other words, negligibly-
close to) a real one. One may wondering if it is possible to use the above truncating argument
to construct a strictly-polynomial time Sim′ that is just as good as Sim. But this does not work
because the output of Sim′ will not be negligibly-close to that of Sim (due to the constant fraction
drop). Therefore, the output of Sim′ will not be negligibly-close to the real view anymore.6 It is

6Indeed, this limitation is inherent. [BL02] shows that constant-round zero-knowledge protocols admitting strictly-
polynomial-time black-box simulation are possible only for languages in BPP.

129

also worth noting that this truncating argument can be used in the ε-zero-knowledge setting—ε-ZK
with expected PPT/QPT simulation are equivalent to those with strictly PPT/QPT simulation.
This is because, for ε simulation, we have the freedom to set the proper bound when using Markov
inequality to matching the targeted ε, which is an inverse polynomial on the security parameter.

Remark 15.2.1. Actually, [BL02] provides a different explanation for why it does work to truncate
the expected PPT simulator. That argument take specific constructions of simulators as an example,
thus not general (But that argument suffices to show that one can not take an arbitrary (but effective)
expected PPT simulator, truncate it, and then expect it to work). The explanation given above does
not make any assumption on how the given expected PPT simulator works. It shows better why it
is hard to use Markov inequality to make the truncating argument work.

Some Afterthoughts. The above discussion seems to give us more confidence about the thought
that “expected polynomial time” is indeed a reasonable relaxation. This is good news due to the
following fact—expected polynomial time is actually inherent in all the fully-black-box reductions
(in the terminology of [RTV04]) for zero-knowledge property or arguments/proofs of knowledge, if
one insists on constant-round constructions from standard assumptions [BL02].

However, the following another-side view may stop you from celebrating the good news. The
above argument seems to say that allowing the adversary to run in expected polynomial time does
not make much difference. For example, Lemma 15.2.1 essentially says that requiring one-wayness
to hold against all expected PPT adversaries would eventually result in the same definition of OWFs
as the standard one. If so, then why are cryptographers trying so hard to distinguish between the
strict polynomial time and the expected one?

The short answer is—expected polynomial-time simulation/extraction is not closed under com-
position. Elaborating on this point could require another long article. For those who are interested,
see the introduction section of the insightful work of Barak and Lindell [BL02] and the references
there.

130

Chapter 16
Miscellaneous

16.1 Some Superfluous Notes on Negligible Functions

16.1.1 On the Order of Quantifiers
From Katz-Lindell Xiao: citation:

Xiao!

Definition 16.1.1. A function f : N→ R≥0 is negligible if

∀p(·), ∃N ∈ N, ∀n > N, f(n) <
1

p(n)
.

♢

From Goldreich Xiao: citation:
Xiao!

Definition 16.1.2. A function f : N→ R≥0 is negligible if for every positive polynomial p(·) and
all sufficiently large n’s, it holds that f(n) < 1

p(n) . ♢

As a person who constantly overthinks, I was lost in the following two interpretations for
Definition 16.1.2 when I saw it for the first time:

1. ∀p(·), ∃N ∈ N, ∀n > N, f(n) < 1
p(n) .

2. ∃N ∈ N, ∀p(·), ∀n > N, f(n) < 1
p(n) .

The first interpretation comes by replacing “all sufficiently large n” with “∃N ∈ N s.t. ∀n >
N” literally in Definition 16.1.2. It is identical to Definition 16.1.1, and should be the correct
interpretation.

At least at the first glance, the second one also seems to be a possible interpretation. I think
the reason is rooted in the ambiguity of the phrase “all sufficiently large n”. It hides the quantifiers!
This is also why I feel uncomfortable when people do not use rigorous mathematical notations
when they could. (But this is anyway a personal opinion. It is arguably true that Definition
Definition 16.1.2 does not cause a similar confusion as I have to most “regular” readers.)

However, the second interpretation is erroneous as it results in an unsatisfiable definition (except
for f(n) = 0). The reason is that once N is pre-fixed, no matter now fast f(·) approaches 0, you can
always find a large enough polynomial p(·) as such that f(N) > 1

p(N) . Therefore, in the definition
of negligibility, the “threshold” N must depend on p(·).

The above discussion leads to an interesting question:

• Is it problematic if we don’t have an universal threshold N? Negligible functions are usually
used to guarantee certain security level. Will there be any problems if its behavior depends
on adversaries’ (polynomial) running time?

131

A similar problem appears for the order that we quantify the negligble function and the adver-
sary:

1. ∃negl(·), ∀Adv ...

2. ∀Adv, ∃negl(·), ...
[Bellare97] showed that the above two versions are actually equivalent. But the question I asked
above if about where we put the threshold N . And we have to settle on the first interpretation
as the second one is wrong. Xiao: But what does it mean in application when we use neglgible

Xiao!functions to capture security level?

16.1.2 On the Threshold
Katz-Lindell’s definition for OWFs:

• for all PPT Adv, there exists a negligible function negl such that:

Pr[Win(1n)] ≤ negl(n).

They didn’t quantify the security parameter n. But it is clear from the context that they mean the
following:

• for all PPT Adv, there exists a negligible function negl such that for all n ∈ N, it holds that:

Pr[Win(1n)] ≤ negl(n).

Again, I have the following overthinker’s interpretation:
• for all PPT Adv, there exists a negligible function negl and an N ≥ N such that for all n > N ,

it holds that:
Pr[Win(1n)] ≤ negl(n).

But the above two versions should be equivalent due to the property of negligible functions.
However, an interesting point is: the above claim does not hold any more once the negl(·)

gets instantiated by some concrete negligible function. In this setting, the second one is the correct
definition. Meanwhile, the first interpretation would be unsatisfiable. Indeed, the underlying OWFs
are from some computational assumptions. For every n, there always exist some adversary who
runs in (very large but still) polynomial time and is able to breach the underlying assumption. The
second interpretation resolves the above problem by inserting the threshold N , which essentially
allow the concrete negligible function to depend on the target adversary.

The second interpretation actually appeared in Bellare’s paper [Bellare97] with a notation called
“eventually smaller than” to capture it.

This problem will appear wherever we want to talk about concrete functions. For example, if
we want to say two ensembles are δ(n)-computationally-close, where δ(·) is some concrete function
(e.g., δ(n) = 1

n3), we have to capture it as:
• For all PPT distinguisher Adv, there exists an N ∈ N such that for all n > N , Pr[Adv wins] ≤
δ(n).

If we try to cast it in the form of version 2 above, i.e.
• For all PPT distinguisher Adv and for all n ∈ N, Pr[Adv wins] ≤ δ(n).

This is obviously unsatisfiable.

132

https://eprint.iacr.org/1997/004.pdf
https://eprint.iacr.org/1997/004.pdf

16.1.3 On the Summation of Negligible Functions
Somewhat surprisingly, the sum of polynomially many negligible functions may not be negligible.
Here is a counter example due to Bellare [Remark 3.3, Bellare97].

Consider the following summation of polynomially many different negligible functions:

f(λ) =

λ∑
i=1

εi(λ), where εi(λ) :=
{
1 λ ≤ i
0 λ > i

.

Obviously, for any fixed i, εi(λ) is negligible (on λ). But f(λ) is not negligible (as a function on λ).
Though this issue is often ignored, it is usually not a real technical issue since negligible functions

in the summation are usually upper bounded by a constant number of negligible functions because
the number of assumptions being used is usually a constant.

133

https://eprint.iacr.org/1997/004.pdf

Acknowledgments
I want to express my gratitude to a group of super knowledgeable and patient people, who help
me a lot to build a solid understanding of the materials herein. They are Nai-Hui Chia, Kai-Min
Chung, Mohammad Hajiabadi, Giulio Malavolta, Omkant Pandey, and Takashi Yamakawa.

134

Bibliography
[Aar04] Scott Aaronson. Limitations of quantum advice and one-way communication. In

19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24
June 2004, Amherst, MA, USA, pages 320–332. IEEE Computer Society, 2004. doi:
10.1109/CCC.2004.1313854. 119

[Aar05] Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-
time. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2063):3473–3482, 2005. 119

[Aar06] Scott Aaronson. Qma/qpoly \subseteq pspace/poly: De-merlinizing quantum proto-
cols. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006),
16-20 July 2006, Prague, Czech Republic, pages 261–273. IEEE Computer Society,
2006. doi:10.1109/CCC.2006.36. 119

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: From quan-
tum money to black holes. CoRR, abs/1607.05256, 2016. URL: http://arxiv.org/
abs/1607.05256, arXiv:1607.05256. 118, 119

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009. 70, 71, 100, 111, 112, 155

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs
for quantum computations, 2017. arXiv:1704.04487. 68

[AD10] Scott Aaronson and Andrew Drucker. A full characterization of quantum advice. In
Leonard J. Schulman, editor, 42nd Annual ACM Symposium on Theory of Computing,
pages 131–140, Cambridge, MA, USA, June 5–8, 2010. ACM Press. doi:10.1145/
1806689.1806709. 119

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solv-
ing the shortest vector problem in 2n time using discrete Gaussian sampling: Extended
abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Sym-
posium on Theory of Computing, pages 733–742, Portland, OR, USA, June 14–17,
2015. ACM Press. doi:10.1145/2746539.2746606. 93

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs
using semi-classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes
in Computer Science, pages 269–295, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26951-7_10. 51

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th Annual ACM Symposium on Theory of Computing, pages 99–108, Philadephia,
PA, USA, May 22–24, 1996. ACM Press. doi:10.1145/237814.237838. 94

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In 30th Annual ACM Symposium on Theory of Computing,

135

https://doi.org/10.1109/CCC.2004.1313854
https://doi.org/10.1109/CCC.2004.1313854
https://doi.org/10.1109/CCC.2006.36
http://arxiv.org/abs/1607.05256
http://arxiv.org/abs/1607.05256
http://arxiv.org/abs/1607.05256
http://arxiv.org/abs/1704.04487
https://doi.org/10.1145/1806689.1806709
https://doi.org/10.1145/1806689.1806709
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/237814.237838

pages 10–19, Dallas, TX, USA, May 23–26, 1998. ACM Press. doi:10.1145/276698.
276705. 93

[AK07] Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice.
In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16
June 2007, San Diego, California, USA, pages 115–128. IEEE Computer Society,
2007. doi:10.1109/CCC.2007.27. 118, 119

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In 33rd Annual ACM Symposium on Theory of Computing,
pages 601–610, Crete, Greece, July 6–8, 2001. ACM Press. doi:10.1145/380752.
380857. 93

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In 33rd Annual Sympo-
sium on Foundations of Computer Science, pages 14–23, Pittsburgh, PA, USA, Oc-
tober 24–27, 1992. IEEE Computer Society Press. doi:10.1109/SFCS.1992.267823.
123

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998. 123

[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear
time. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages
1–20, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-40041-4_1. 97

[AR04] Dorit Aharonov and Oded Regev. Lattice problems in NP cap coNP. In 45th An-
nual Symposium on Foundations of Computer Science, pages 362–371, Rome, Italy,
October 17–19, 2004. IEEE Computer Society Press. doi:10.1109/FOCS.2004.35.
93

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th
Theory of Cryptography Conference, Part I, volume 11891 of Lecture Notes in Com-
puter Science, pages 174–198, Nuremberg, Germany, December 1–5, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-36030-6_8. 106

[Axl15] Sheldon Axler. Linear algebra done right. Springer, 2015. 38, 41

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reduc-
tions, revisited. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
– ASIACRYPT 2013, Part I, volume 8269 of Lecture Notes in Computer Science,
pages 296–315, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-642-42033-7_16. 124

[BCH+95] Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu Sudan.
Linearity testing in characteristic two. In 36th Annual Symposium on Foundations
of Computer Science, pages 432–441, Milwaukee, Wisconsin, October 23–25, 1995.
IEEE Computer Society Press. doi:10.1109/SFCS.1995.492574. 122

136

https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://doi.org/10.1109/CCC.2007.27
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1109/FOCS.2004.35
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1109/SFCS.1995.492574

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of
Computer Science, pages 320–331, Paris, France, October 7–9, 2018. IEEE Computer
Society Press. doi:10.1109/FOCS.2018.00038. 95, 155

[BDD+02] Michael J Bremner, Christopher M Dawson, Jennifer L Dodd, Alexei Gilchrist,
Aram W Harrow, Duncan Mortimer, Michael A Nielsen, and Tobias J Osborne. Prac-
tical scheme for quantum computation with any two-qubit entangling gate. Physical
review letters, 89(24):247902, 2002. 64

[BF10] Niek J. Bouman and Serge Fehr. Sampling in a quantum population, and applications.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 724–741, Santa Barbara, CA, USA, August 15–19,
2010. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-14623-7_39. 67, 77,
154

[BFNW93] Lźszló Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexpo-
nential time simulations unlessexptime has publishable proofs. Computational Com-
plexity, 3(4):307–318, 1993. 2

[BFO08] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for
deterministic encryption, and efficient constructions without random oracles. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 335–359, Santa Barbara, CA, USA, August 17–21,
2008. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-85174-5_19. 88, 89,
155

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs and applications to coding. In László
Babai, editor, 36th Annual ACM Symposium on Theory of Computing, pages 1–10,
Chicago, IL, USA, June 13–16, 2004. ACM Press. doi:10.1145/1007352.1007361.
123

[Bha96] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer New York,
1996. URL: https://books.google.com/books?id=F4hRy1F1M6QC. 62

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge
arguments based on any one-way function. In Walter Fumy, editor, Advances in
Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science,
pages 280–305, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany.
doi:10.1007/3-540-69053-0_20. 72, 128

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction.
In 34th Annual ACM Symposium on Theory of Computing, pages 484–493, Montréal,
Québec, Canada, May 19–21, 2002. ACM Press. doi:10.1145/509907.509979. 129,
130

[BLMZ18] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. Technical report, Cryptology ePrint Archive, Report
2018/936, 2018. https://eprint. iacr. org …, 2018. 88

137

https://doi.org/10.1109/FOCS.2018.00038
https://doi.org/10.1007/978-3-642-14623-7_39
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1145/1007352.1007361
https://books.google.com/books?id=F4hRy1F1M6QC
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1145/509907.509979

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. In 22nd Annual ACM Symposium on Theory
of Computing, pages 73–83, Baltimore, MD, USA, May 14–16, 1990. ACM Press.
doi:10.1145/100216.100225. 121, 122

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
719–737, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-29011-4_42. 96

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Gane-
san, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. doi:10.1145/168588.168596. 84

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 868–886, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-32009-5_50. 95

[BV93] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. In 25th An-
nual ACM Symposium on Theory of Computing, pages 11–20, San Diego, CA, USA,
May 16–18, 1993. ACM Press. doi:10.1145/167088.167097. 39

[BY22] Zvika Brakerski and Henry Yuen. Quantum garbled circuits. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 804–817,
2022. 62

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in
a quantum computing world. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 361–379, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-40084-1_21. 59

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. A black-box approach to
post-quantum zero-knowledge in constant round. CoRR, abs/2011.02670, 2020. URL:
https://arxiv.org/abs/2011.02670, arXiv:2011.02670. 62

[CFM21] Geoffroy Couteau, Pooya Farshim, and Mohammad Mahmoody. Black-box useless-
ness: Composing separations in cryptography. In James R. Lee, editor, ITCS 2021:
12th Innovations in Theoretical Computer Science Conference, volume 185, pages
47:1–47:20, Virtual Conference, January 6–8, 2021. LIPIcs. doi:10.4230/LIPIcs.
ITCS.2021.47. 16

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In 32nd Annual ACM Symposium on Theory of
Computing, pages 235–244, Portland, OR, USA, May 21–23, 2000. ACM Press.
doi:10.1145/335305.335334. 2

138

https://doi.org/10.1145/100216.100225
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/167088.167097
https://doi.org/10.1007/978-3-642-40084-1_21
https://arxiv.org/abs/2011.02670
http://arxiv.org/abs/2011.02670
https://doi.org/10.4230/LIPIcs.ITCS.2021.47
https://doi.org/10.4230/LIPIcs.ITCS.2021.47
https://doi.org/10.1145/335305.335334

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires omega (log n) rounds. In 33rd Annual ACM Symposium on Theory
of Computing, pages 570–579, Crete, Greece, July 6–8, 2001. ACM Press. doi:
10.1145/380752.380852. 1

[CLMP12] Kai-Min Chung, Edward Lui, Mohammad Mahmoody, and Rafael Pass. Unprovable
security of two-message zero knowledge. Technical report, Department of Computer
Science, Cornell University, Ithaca, NY, 2012. 72

[CLMP13] Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the power
of nonuniformity in proofs of security. In Robert D. Kleinberg, editor, ITCS 2013:
4th Innovations in Theoretical Computer Science, pages 389–400, Berkeley, CA, USA,
January 9–12, 2013. Association for Computing Machinery. doi:10.1145/2422436.
2422480. 125

[CLZ22] Yilei Chen, Qipeng Liu, and Mark Zhandry. Quantum algorithms for variants of
average-case lattice problems via filtering. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 372–401. Springer, 2022.
98

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum
succinct arguments. Electron. Colloquium Comput. Complex., 28:38, 2021. URL:
https://eccc.weizmann.ac.il/report/2021/038. 61, 62

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158. ACM,
1971. 112

[Coo73] Stephen A Cook. A hierarchy for nondeterministic time complexity. Journal of
Computer and System Sciences, 7(4):343–353, 1973. 110

[CW79] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. Journal
of computer and system sciences, 18(2):143–154, 1979. 86

[Dam88] Ivan Damgård. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, Advances in Cryptology – EURO-
CRYPT’87, volume 304 of Lecture Notes in Computer Science, pages 203–216,
Amsterdam, The Netherlands, April 13–15, 1988. Springer, Heidelberg, Germany.
doi:10.1007/3-540-39118-5_19. 84

[Deu85] David Deutsch. Quantum theory, the church–turing principle and the universal quan-
tum computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97–117, 1985. 39

[DF04] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley
Hoboken, 2004. 31, 41

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs.
Two-round oblivious transfer from cdh or lpn. Cryptology ePrint Archive, Report
2019/414, 2019. https://eprint.iacr.org/2019/414. 74

139

https://doi.org/10.1145/380752.380852
https://doi.org/10.1145/380752.380852
https://doi.org/10.1145/2422436.2422480
https://doi.org/10.1145/2422436.2422480
https://eccc.weizmann.ac.il/report/2021/038
https://doi.org/10.1007/3-540-39118-5_19
https://eprint.iacr.org/2019/414

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and
Rafail Ostrovsky. Trapdoor hash functions and their applications. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part III, volume 11694 of Lecture Notes in Computer Science, pages 3–32, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-26954-8_1. 96

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-
putation. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 439(1907):553–558, 1992. 39

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001: 4th International Workshop on Theory and Practice in Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–136,
Cheju Island, South Korea, February 13–15, 2001. Springer, Heidelberg, Germany.
doi:10.1007/3-540-44586-2_9. 82

[DK12] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-
rate tampering. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 533–551, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-32009-5_31. 123

[DORS03] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. Cryptology ePrint
Archive, Report 2003/235, 2003. https://eprint.iacr.org/2003/235. 88, 89, 90,
91

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 523–540, Interlaken, Switzerland, May 2–6,
2004. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-24676-3_31. 89, 90,
91

[Fei90] Uriel Feige. Alternative models for zero knowledge interactive proofs. PhD thesis,
Weizmann Institute of Science, Rehovot, Israel, 1990. 128

[FK18] Bill Fefferman and Shelby Kimmel. Quantum vs. classical proofs and subset verifica-
tion. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August
27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.
MFCS.2018.22, doi:10.4230/LIPICS.MFCS.2018.22. 118

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Sympo-
sium on Foundations of Computer Science, pages 308–317, St. Louis, MO, USA, Oc-
tober 22–24, 1990. IEEE Computer Society Press. doi:10.1109/FSCS.1990.89549.
75, 154

140

https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-32009-5_31
https://eprint.iacr.org/2003/235
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://doi.org/10.4230/LIPICS.MFCS.2018.22
https://doi.org/10.1109/FSCS.1990.89549

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194,
Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany. doi:10.
1007/3-540-47721-7_12. 84

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. doi:
10.1145/1536414.1536440. 88

[GG98] Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability of lattice
problems. In 30th Annual ACM Symposium on Theory of Computing, pages 1–9,
Dallas, TX, USA, May 23–26, 1998. ACM Press. doi:10.1145/276698.276704. 93

[GGK03] Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the efficiency
of encryption and digital signature schemes. In 35th Annual ACM Symposium on
Theory of Computing, pages 417–425, San Diego, CA, USA, June 9–11, 2003. ACM
Press. doi:10.1145/780542.780604. 127

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on
the efficiency of generic cryptographic constructions. SIAM journal on Computing,
35(1):217–246, 2005. 127

[GHLS15] Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum
hamiltonian complexity. Foundations and Trends® in Theoretical Computer Sci-
ence, 10(3):159–282, 2015. URL: http://dx.doi.org/10.1561/0400000066, doi:
10.1561/0400000066. 68

[GIK+23] Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, and Amit Sa-
hai. Hard languages in np ∩ conp and nizk proofs from unstructured hardness. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages
1243–1256, 2023. 75, 154

[Gir23] Steven M. Girvin. Introduction to quantum error correction and fault tolerance. Sci-
Post Physics Lecture Notes, jun 2023. URL: https://arxiv.org/abs/2111.08894,
doi:10.21468/scipostphyslectnotes.70. 67

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, June 1996. 128

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In 41st Annual Symposium on Foundations of Computer Science, pages 325–335,
Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.
doi:10.1109/SFCS.2000.892121. 126

[GKP18] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. A new approach to black-box
concurrent secure computation. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture
Notes in Computer Science, pages 566–599, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78375-8_19. 125

141

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/276698.276704
https://doi.org/10.1145/780542.780604
http://dx.doi.org/10.1561/0400000066
https://doi.org/10.1561/0400000066
https://doi.org/10.1561/0400000066
https://arxiv.org/abs/2111.08894
https://doi.org/10.21468/scipostphyslectnotes.70
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1007/978-3-319-78375-8_19

[GLM23] Vipul Goyal, Xiao Liang, and Giulio Malavolta. On concurrent multi-party quantum
computation. Cryptology ePrint Archive, 2023. 77, 154

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. 81

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. 125

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(3):691–729, 1991. 125

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology, 7(1):1–32, December 1994. doi:10.1007/BF00195207.
125

[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008. URL: https://books.google.com/books?id=c-LlnQEACAAJ.
104

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new tech-
niques for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Heidelberg, Germany. doi:10.1007/11818175_
6. 107

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 339–358, St. Petersburg, Rus-
sia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. doi:10.1007/11761679_
21. 107

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box non-
black-box zero knowledge. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 515–524, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. doi:10.1145/2591796.2591879. 123

[Got10] Daniel Gottesman. An introduction to quantum error correction and fault-tolerant
quantum computation. In Quantum information science and its contributions to
mathematics, Proceedings of Symposia in Applied Mathematics, volume 68, pages
13–58, 2010. The original paper appeared as arXiv:0904.2557. 65, 68

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206, Vic-
toria, BC, Canada, May 17–20, 2008. ACM Press. doi:10.1145/1374376.1374407.
94

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, 2008. 101, 155

142

https://doi.org/10.1007/BF00195207
https://books.google.com/books?id=c-LlnQEACAAJ
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1145/2591796.2591879
https://doi.org/10.1145/1374376.1374407

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th
Annual ACM Symposium on Theory of Computing, pages 212–219, Philadephia, PA,
USA, May 22–24, 1996. ACM Press. doi:10.1145/237814.237866. 39

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In 18th Annual ACM Symposium on Theory of Computing, pages 59–
68, Berkeley, CA, USA, May 28–30, 1986. ACM Press. doi:10.1145/12130.12137.
123

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 415–432, Istanbul, Turkey, April 13–17,
2008. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-78967-3_24. 31

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa
Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-40041-4_5. 95

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryp-
tographic constructions. In 41st Annual Symposium on Foundations of Computer
Science, pages 305–313, Redondo Beach, CA, USA, November 12–14, 2000. IEEE
Computer Society Press. doi:10.1109/SFCS.2000.892119. 127

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lec-
ture Notes in Computer Science, pages 162–179, Santa Barbara, CA, USA, August 19–
23, 2012. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-32009-5_11. 106

[Haj18] Mohammad Hajiabadi. Enhancements are blackbox non-trivial: Impossibility of
enhanced trapdoor permutations from standard trapdoor permutations. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptog-
raphy Conference, Part I, volume 11239 of Lecture Notes in Computer Science,
pages 448–475, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-03807-6_17. 72, 126

[Hås90] Johan Håstad. Pseudo-random generators under uniform assumptions. In 22nd An-
nual ACM Symposium on Theory of Computing, pages 395–404, Baltimore, MD, USA,
May 14–16, 1990. ACM Press. doi:10.1145/100216.100270. 125

[HHPS11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs
of ownership in remote storage systems. In Yan Chen, George Danezis, and Vitaly
Shmatikov, editors, ACM CCS 2011: 18th Conference on Computer and Communi-
cations Security, pages 491–500, Chicago, Illinois, USA, October 17–21, 2011. ACM
Press. doi:10.1145/2046707.2046765. 84, 85

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,

143

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/12130.12137
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/SFCS.2000.892119
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-030-03807-6_17
https://doi.org/10.1145/100216.100270
https://doi.org/10.1145/2046707.2046765

editor, 59th Annual Symposium on Foundations of Computer Science, pages 850–858,
Paris, France, October 7–9, 2018. IEEE Computer Society Press. doi:10.1109/FOCS.
2018.00085. 84

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient
cryptography from minimal assumptions. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lec-
ture Notes in Computer Science, pages 160–176, Athens, Greece, May 26–30, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-38348-9_10. 88

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963. URL:
http://www.jstor.org/stable/2282952? 76

[HPSS08] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. An
introduction to mathematical cryptography, volume 1. Springer, 2008. 93

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of
the ACM (JACM), 24(2):332–337, 1977. 115

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 92–105, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg,
Germany. doi:10.1007/978-3-540-28628-8_6. 72, 126

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. In David S. Johnson and Uriel Feige, editors,
39th Annual ACM Symposium on Theory of Computing, pages 469–477, San Diego,
CA, USA, June 11–13, 2007. ACM Press. doi:10.1145/1250790.1250859. 93

[HRT03] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup prob-
lem and quantum computation using group representations. SIAM J. Comput.,
32(4):916–934, 2003. doi:10.1137/S009753970139450X. 119

[HS65] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965. 110,
114

[HS66] Fred C Hennie and Richard Edwin Stearns. Two-tape simulation of multitape turing
machines. Journal of the ACM (JACM), 13(4):533–546, 1966. 105

[HY20] Akinori Hosoyamada and Takashi Yamakawa. Finding collisions in a quantum world:
Quantum black-box separation of collision-resistance and one-wayness. In Shiho Mo-
riai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
Part I, volume 12491 of Lecture Notes in Computer Science, pages 3–32, Dae-
jeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-64837-4_1. 126

[HZ11] Teiko Heinosaari and Mário Ziman. The mathematical language of quantum theory:
from uncertainty to entanglement. Cambridge University Press, 2011. 49

144

https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1007/978-3-642-38348-9_10
http://www.jstor.org/stable/2282952?
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1145/1250790.1250859
https://doi.org/10.1137/S009753970139450X
https://doi.org/10.1007/978-3-030-64837-4_1
https://doi.org/10.1007/978-3-030-64837-4_1

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.
doi:10.1145/73007.73009. 88, 125

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on computing, 17(5):935–938, 1988. 113

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. 2

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In 21st Annual ACM Symposium on Theory of Computing, pages
44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press. doi:10.1145/73007.73012.
16, 126, 127

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with
zero-knowledge. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography
Conference, volume 8349 of Lecture Notes in Computer Science, pages 121–145, San
Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany. doi:10.
1007/978-3-642-54242-8_6. 123

[JJUW10] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
573–582. ACM, 2010. doi:10.1145/1806689.1806768. 118

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021. 109

[Jor70] Camille Jordan. Traité des substitutions et des équations algébriques, volume 1.
Gauthier-Villars, 1870. 46, 62

[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société mathé-
matique de France, 3:103–174, 1875. iii, 61, 62

[Jor93] Camille Jordan. Cours d’analyse de l’École polytechnique, volume 1. Gauthier-Villars
et fils, 1893. 62

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In 15th Annual ACM Symposium on Theory of Computing, pages 193–206,
Boston, MA, USA, April 25–27, 1983. ACM Press. doi:10.1145/800061.808749. 93

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972. 112

[Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. In
45th Annual Symposium on Foundations of Computer Science, pages 126–135, Rome,
Italy, October 17–19, 2004. IEEE Computer Society Press. doi:10.1109/FOCS.2004.
31. 93

145

https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1145/1806689.1806768
https://doi.org/10.1145/800061.808749
https://doi.org/10.1109/FOCS.2004.31
https://doi.org/10.1109/FOCS.2004.31

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In 24th Annual ACM Symposium on Theory of Computing, pages 723–732,
Victoria, BC, Canada, May 4–6, 1992. ACM Press. doi:10.1145/129712.129782.
85

[Kil94] Joe Kilian. On the complexity of bounded-interaction and noninteractive zero-
knowledge proofs. In 35th Annual Symposium on Foundations of Computer Science,
pages 466–477, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer Society
Press. doi:10.1109/SFCS.1994.365744. 84

[Kit96] Alexei Y. Kitaev. Quantum measurements and the abelian stabilizer problem. Elec-
tron. Colloquium Comput. Complex., (3), 1996. URL: https://eccc.weizmann.ac.
il/eccc-reports/1996/TR96-003/index.html. 119

[KK20] Nathan Keller and Ohad Klein. Proof of tomaszewski’s conjecture on randomly signed
sums, 2020. arXiv:2006.16834. 74

[KKNY05] Akinori Kawachi, Takeshi Koshiba, Harumichi Nishimura, and Tomoyuki Yamakami.
Computational indistinguishability between quantum states and its cryptographic
application. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 268–284, Aarhus, Denmark,
May 22–26, 2005. Springer, Heidelberg, Germany. doi:10.1007/11426639_16. 119,
120

[KL82] Richard M. Karp and Richard J. Lipton. Turing machines that take advice.
L’Ensignement Mathématique, 28:191–210, 1982. 116, 117

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chapman
and Hall/CRC, 2014. 28

[KLM06] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum
Computing. Oxford University Press, 2006. 38, 64, 67

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th Annual Symposium
on Foundations of Computer Science, pages 364–373, Miami Beach, Florida, Octo-
ber 19–22, 1997. IEEE Computer Society Press. doi:10.1109/SFCS.1997.646125.
81, 82, 154

[KOS18] Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round optimal
black-box “commit-and-prove”. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018: 16th Theory of Cryptography Conference, Part I, volume 11239 of Lecture
Notes in Computer Science, pages 286–313, Panaji, India, November 11–14, 2018.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-03807-6_11. iv, 35, 102

[Kre89] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley Classics Li-
brary. Wiley, 1989. URL: https://books.google.co.jp/books?id=nZmpQgAACAAJ.
8, 13, 22, 23, 24

[KRS09] Robert Konig, Renato Renner, and Christian Schaffner. The operational meaning of
min-and max-entropy. IEEE Transactions on Information theory, 55(9):4337–4347,
2009. URL: https://arxiv.org/abs/0807.1338. 67

146

https://doi.org/10.1145/129712.129782
https://doi.org/10.1109/SFCS.1994.365744
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
http://arxiv.org/abs/2006.16834
https://doi.org/10.1007/11426639_16
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1007/978-3-030-03807-6_11
https://books.google.co.jp/books?id=nZmpQgAACAAJ
https://arxiv.org/abs/0807.1338

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005. 2

[KW00] Alexei Kitaev and John Watrous. Parallelization, amplification, and exponential time
simulation of quantum interactive proof systems. In 32nd Annual ACM Symposium
on Theory of Computing, pages 608–617, Portland, OR, USA, May 21–23, 2000. ACM
Press. doi:10.1145/335305.335387. 118

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from stan-
dard lattice assumptions. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 503–536, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-63688-7_17. 96

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via
extractable PRFs. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 335–366, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-26954-8_11. 96

[Lad75] Richard E Ladner. On the structure of polynomial time reducibility. Journal of the
ACM (JACM), 22(1):155–171, 1975. 116

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi
informatsii, 9(3):115–116, 1973. 112

[Lin17] Yehuda Lindell, editor. Tutorials on the Foundations of Cryptography. Springer
International Publishing, 2017. doi:10.1007/978-3-319-57048-8. 102

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. 93

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
1–23, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-13190-5_1. 97

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE
cryptography. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Sci-
ence, pages 35–54, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-38348-9_3. 97

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Ran Canetti, editor,
TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 571–588, San Francisco, CA, USA, March 19–21, 2008.
Springer, Heidelberg, Germany. doi:10.1007/978-3-540-78524-8_31. 125

[Mar21] T Mart. How do i introduce schrödinger equation during the quantum mechanics
course? Physics Education, 56(2):025012, 2021. 68

147

https://doi.org/10.1145/335305.335387
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-319-57048-8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-540-78524-8_31

[Mel24] Antonio Anna Mele. Introduction to haar measure tools in quantum information:
A beginner’s tutorial. Quantum, 8:1340, May 2024. URL: http://dx.doi.org/10.
22331/q-2024-05-08-1340, doi:10.22331/q-2024-05-08-1340. 13

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems - a cryp-
tograhic perspective, volume 671 of The Kluwer international series in engineering
and computer science. Springer, 2002. 98

[Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. In 39th Annual Symposium on Foundations of Computer Science,
pages 92–98, Palo Alto, CA, USA, November 8–11, 1998. IEEE Computer Society
Press. doi:10.1109/SFCS.1998.743432. 93

[Mil01] Peter Bro Miltersen. Derandomizing complexity classes. COMBINATORIAL
OPTIMIZATION-DORDRECHT-, 9(2):843–941, 2001. 2

[MLDS+13] Martin Müller-Lennert, Frédéric Dupuis, Oleg Szehr, Serge Fehr, and Marco
Tomamichel. On quantum rényi entropies: A new generalization and some prop-
erties. Journal of Mathematical Physics, 54(12):122203, 2013. 80, 154

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 465–484, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-22792-9_26. 95

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
700–718, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-29011-4_41. 95

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small pa-
rameters. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages
21–39, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-40041-4_2. 94

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th Annual Symposium on Foundations of Computer
Science, pages 372–381, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press. doi:10.1109/FOCS.2004.72. 94

[MS16] Carl A Miller and Yaoyun Shi. Robust protocols for securely expanding randomness
and distributing keys using untrusted quantum devices. Journal of the ACM (JACM),
63(4):1–63, 2016. 80, 154

[Mun84] James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984. 12

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.

148

http://dx.doi.org/10.22331/q-2024-05-08-1340
http://dx.doi.org/10.22331/q-2024-05-08-1340
https://doi.org/10.22331/q-2024-05-08-1340
https://doi.org/10.1109/SFCS.1998.743432
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1109/FOCS.2004.72

Schulman, editor, 42nd Annual ACM Symposium on Theory of Computing, pages 351–
358, Cambridge, MA, USA, June 5–8, 2010. ACM Press. doi:10.1145/1806689.
1806738. 93

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition,
2011. 43, 44, 51, 55, 56, 57, 60, 63, 64, 65, 66, 67

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and
System Sciences, 49(2):149–167, 1994. 70

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum
Inf. Comput., 9(11&12):1053–1068, 2009. doi:10.26421/QIC9.11-12-8. 62

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, WA, USA, May 15–17, 1989. ACM Press. doi:10.1145/73007.73011. 84,
86

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Com-
puter and System Sciences, 52(1):43–52, 1996. 90

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 223–238, Prague, Czech Republic,
May 2–6, 1999. Springer, Heidelberg, Germany. doi:10.1007/3-540-48910-X_16.
82

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 160–176, Warsaw, Poland,
May 4–8, 2003. Springer, Heidelberg, Germany. doi:10.1007/3-540-39200-9_10. 2

[Pas04] Rafael Pass. Alternative variants of zero-knowledge proofs. Master’s thesis, Royal
Institute of Technology, Stockholm, Sweden, 2004. 2

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium
on Theory of Computing, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009.
ACM Press. doi:10.1145/1536414.1536461. 95

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939, 2015. https://eprint.iacr.org/2015/939. 92, 93, 95, 97

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on
Theory of Computing, pages 187–196, Victoria, BC, Canada, May 17–20, 2008. ACM
Press. doi:10.1145/1374376.1374406. 89

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv preprint quant-ph/0406151, 2004. 2

149

https://doi.org/10.1145/1806689.1806738
https://doi.org/10.1145/1806689.1806738
https://doi.org/10.26421/QIC9.11-12-8
https://doi.org/10.1145/73007.73011
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1145/1536414.1536461
https://eprint.iacr.org/2015/939
https://doi.org/10.1145/1374376.1374406

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press. doi:10.1145/1060590.1060603. 95, 96

[Ren08] Renato Renner. Security of quantum key distribution. International Journal of Quan-
tum Information, 6(01):1–127, 2008. URL: https://arxiv.org/abs/quant-ph/
0512258. 39, 67, 79, 80, 154

[RK05] Renato Renner and Robert König. Universally composable privacy amplification
against quantum adversaries. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryp-
tography Conference, volume 3378 of Lecture Notes in Computer Science, pages 407–
425, Cambridge, MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.
doi:10.1007/978-3-540-30576-7_22. 67

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages
1–20, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.
doi:10.1007/978-3-540-24638-1_1. v, 124, 125, 126, 127, 130

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer Science,
pages 543–553, New York, NY, USA, October 17–19, 1999. IEEE Computer Society
Press. doi:10.1109/SFFCS.1999.814628. ii, 35, 153

[Sav70] Walter J Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of computer and system sciences, 4(2):177–192, 1970. 114

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical computer science, 53(2-3):201–224, 1987. 93

[Sha49] Claude E Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949. 111

[SHL65] Richard Edwin Stearns, Juris Hartmanis, and Philip M Lewis. Hierarchies of memory
limited computations. In 6th Annual Symposium on Switching Circuit Theory and
Logical Design (SWCT 1965), pages 179–190. IEEE, 1965. 111

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In 35th Annual Symposium on Foundations of Computer Science, pages 124–
134, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer Society Press.
doi:10.1109/SFCS.1994.365700. 39

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review, 41(2):303–332, 1999. 93

[Sim94] Daniel R. Simon. On the power of quantum computation. In 35th Annual Symposium
on Foundations of Computer Science, pages 116–123, Santa Fe, NM, USA, Novem-
ber 20–22, 1994. IEEE Computer Society Press. doi:10.1109/SFCS.1994.365701.
39

150

https://doi.org/10.1145/1060590.1060603
https://arxiv.org/abs/quant-ph/0512258
https://arxiv.org/abs/quant-ph/0512258
https://doi.org/10.1007/978-3-540-30576-7_22
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365701

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology
– EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 334–
345, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany. doi:
10.1007/BFb0054137. 126

[Sip12] Michael Sipser. Introduction to the Theory of Computation. Cengage learning, 2012.
112

[SM73] LJ Stockmeyer and AR Meyer. Word problems requiring exponential time: prelimi-
nary report, in5th symp. on theory of computing’. 1973. 112

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 457–473, Aarhus, Denmark, May 22–26, 2005. Springer,
Heidelberg, Germany. doi:10.1007/11426639_27. 36

[Sze87] Róbert Szelepcsényi. The method of forcing for nondeterministic automata. Bull.
European Associ. Theoret. Compur. Sci, 33:96100, 1987. 113

[Tao11] T. Tao. An Introduction to Measure Theory. Graduate studies in mathematics.
American Mathematical Society, 2011. URL: https://books.google.com/books?
id=HoGDAwAAQBAJ. 14, 16

[Tha20] Justin Thaler. Proofs, arguments, and zero-knowledge, 2020. Lecture Notes for
COSC 544 at Georgetown University,. URL: http://people.cs.georgetown.edu/
jthaler/ProofsArgsAndZK.html. 106

[TL17] Marco Tomamichel and Anthony Leverrier. A largely self-contained and complete
security proof for quantum key distribution. Quantum, 1:14, 2017. 67

[Tom12] Marco Tomamichel. A framework for non-asymptotic quantum information theory.
PhD thesis, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzer-
land, 2012. URL: https://arxiv.org/abs/1203.2142. 67

[Tom16] Marco Tomamichel. Quantum Information Processing with Finite Resources. Springer
International Publishing, 2016. URL: https://arxiv.org/abs/1504.00233, doi:
10.1007/978-3-319-21891-5. 67

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012. 87

[VV12] Umesh V. Vazirani and Thomas Vidick. Certifiable quantum dice: or, true random
number generation secure against quantum adversaries. In Howard J. Karloff and
Toniann Pitassi, editors, 44th Annual ACM Symposium on Theory of Computing,
pages 61–76, New York, NY, USA, May 19–22, 2012. ACM Press. doi:10.1145/
2213977.2213984. 80, 154

[Wat18] John Watrous. The theory of quantum information. Cambridge university press, 2018.
55

151

https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/11426639_27
https://books.google.com/books?id=HoGDAwAAQBAJ
https://books.google.com/books?id=HoGDAwAAQBAJ
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://arxiv.org/abs/1203.2142
https://arxiv.org/abs/1504.00233
https://doi.org/10.1007/978-3-319-21891-5
https://doi.org/10.1007/978-3-319-21891-5
https://doi.org/10.1145/2213977.2213984
https://doi.org/10.1145/2213977.2213984

[WC81] Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in
authentication and set equality. Journal of computer and system sciences, 22(3):265–
279, 1981. 86, 87, 155

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51st Annual Symposium on Foundations of Computer Science, pages
531–540, Las Vegas, NV, USA, October 23–26, 2010. IEEE Computer Society Press.
doi:10.1109/FOCS.2010.87. 2, 153

[Wil11] Mark M. Wilde. From classical to quantum shannon theory. CoRR, abs/1106.1445,
2011. URL: http://arxiv.org/abs/1106.1445, arXiv:1106.1445. 49, 54, 55, 57,
67

[Wil17] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2017.
doi:10.1017/9781316809976. 67

[Wol21] Ramona Wolf. Quantum key distribution protocols. In Quantum Key Distribution,
pages 91–116. Springer, 2021. 80, 154

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press. doi:
10.1109/SFCS.1982.45. 74, 154

[Yer11] Arkady Boris Yerukhimovich. A study of separations in cryptography: new results
and new models. PhD thesis, University of Maryland, College Park, Maryland, USA,
2011. 124

[YZ22] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without
structure, 2022. URL: https://arxiv.org/abs/2204.02063, doi:10.48550/ARXIV.
2204.02063. 101, 155

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indif-
ferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer
Science, pages 239–268, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-26951-7_9. 59, 60

152

https://doi.org/10.1109/FOCS.2010.87
http://arxiv.org/abs/1106.1445
http://arxiv.org/abs/1106.1445
https://doi.org/10.1017/9781316809976
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://arxiv.org/abs/2204.02063
https://doi.org/10.48550/ARXIV.2204.02063
https://doi.org/10.48550/ARXIV.2204.02063
https://doi.org/10.1007/978-3-030-26951-7_9

FiXme Information

List of Corrections
Xiao: Give an overview of this example? . 2
Xiao: Talk about [Wee10] as an example. 2
Xiao: Stirling’s Formula . 4
Xiao: Need to define lim inf and lim sup. They will be particularly important when we

talk about measure theory, e.g., Section 2.4.5. 8
Xiao: to do . 9
Xiao: to do . 9
Xiao: Topology to do... 11
Xiao: . 12
Xiao: . 13
Xiao: separable spaces . 13
Xiao: . 13
Xiao: Measure theory to do... 15
Xiao: . 16
Xiao: define outer measure and Carathéodory measurebility 16
Xiao: Functional Analysis to do . 22
Xiao: Talk about the relation between Branching Program and Symmetric groups 26
Xiao: Some book uses “factor group” to refer to “quotient group”. They are the same. . . 26
Xiao: Through Section 3.2.4, we define N = pq, where p and q are primes of equal length. 29
Xiao: Here is my intuition which needs to be verified: GCD in an ED must be unique.

But GCD in a GCD domain is not necessarily unique (counter examples?). 33
Xiao: Add The Fundamental Theorem of Algebra here 35
Xiao: Add this application here. Abstract from [Sah99]. 35
Xiao: add VSS . 36
Xiao: Fourier Transform . 36
Xiao: basic linear algebra . 38
Xiao: Direct Sum . 41
Xiao: Orthogonal projectors are an important class of projectors and enjoy interesting

properties. Add more discussion about them. (See here.) 43
Xiao: Completeness Relation . 43
Xiao: add Jordan normal form here. 46
Xiao: to do... 47
Xiao: Motivating SVD . 47
Xiao: For Ajoint . 49
Xiao: Geometric Properties . 50
Xiao: Naimark’s Dilation . 55
Xiao: applications of QFT . 59
Xiao: Jordan’s Lemma . 62
Xiao: universal quantum circuits . 63
Xiao: Magic States . 65

153

Xiao: Vidick instructed a Quantum Error Correction course in Semester B 2023 at Weiz-
mann Institute of Science. The course page contains many useful resources. 65

Xiao: Add the definitions of quantum error channels here using the Kraus Decomposition
formalism. 65

Xiao: Also need to talk about multi-qubit errors, and the low-order errors in the error
expansion... 65

Xiao: The following Theorem 4.12.1 is the well-known Knill-Laflamme theorem. I later
found that Section 7.2 in Preskill’s notes contains a more beginner-friendly explana-
tion if it than the following Gottesman’s version. 66

Xiao: The proof for Lemma 4.12.3 is a good example for the application of the quantum
Von Neumann entropy. 67

Xiao: Put the definition/derivation here... 70
Xiao: Another good exemplary application of the averaging argument is the amplification

from weak OWFs to (ordinary) OWFs [Yao82]. This lecture note by Rafael Pass
contains a good presentation of it. 74

Xiao: Berry-Esseen Theorem . 74
Xiao: Chebyshev’s inequality played an important role in the hidden-bits model NIZK

setting, e.g. [FLS90, GIK+23]. 75
Xiao: Another version of Chernoff Bound . 75
Xiao: Put the general form here 76
Xiao: Chernoff Bounds from this MIT lecture notes . 76
Xiao: The Example of Goldreich-Levin . 76
Xiao: Include the version from [BF10, Section 2]. 77
Xiao: Doob’s Martingale. A good source can be found at [GLM23]. 77
Xiao: An application for knowledge Extractors. 77
Xiao: talk about Kullback–Leibler divergence (also called relative entropy). check this

video by Wilde. 79
Xiao: Shanon Entropy . 79
Xiao: To do... 79
Xiao: See [Ren08, Chapter 3]. 79
Xiao: There seems to exist different ways to define conditional smooth min-entropy. The

most easy-to-understand one appears in [VV12, Section 2]. But that formalism is
different from, e.g., [Ren08, MLDS+13, MS16]. However, it seems that these differ-
ence is only cosmetic—all of them are meant to enable the extraction of randomness
in the presence of quantum adversaries; In this sense. they functions equivalently. . . 80

Xiao: To do. see [Wol21, Chapter 3.3] . 80
Xiao: The distribution of prime numbers . 81
Xiao: Euler’s theorem . 81
Xiao: repeated squaring . 81
Xiao: Fermat’s little theorem . 81
Xiao: Chinese remainder theorem . 81
Xiao: On [KO97] . 81
Xiao: Discuss the Chinese Remainder Theorem . 83
Xiao: Here (or may be at the end of this chapter, discuss about the difference and relation

between IT-secure hashing and cryptographic hashing.) 84
Xiao: collision resistant hash families . 84
Xiao: (If one of the children of a node is missing from the tree then we consider its value

to be the empty string.) . 84

154

Xiao: More discussion and applications can be found there. 86
Xiao: UOWHF . 86
Xiao: I haven’t checked whether there exist an construction that achieves probability

strictly smaller than 1
|R| . 87

Xiao: Give an exmple of pair-wise independent hashing. e.g. ha,b(x) = ax+ b 87
Xiao: Mention that [WC81] gives q-wise independent hash function for any q. 87
Xiao: discuss Bloom filter here . 87
Xiao: Is it true that if we assume pairwise indenpedent hash function, then we will only

need ℓ ≤ H∞(x)− 2 log
(
1
ε

)
? . 89

Xiao: Also, talk about the average-min entropy and the extended LHL. Check [BFO08],
Reyzin’s lecture notes and Yu Yu’s lecture notes. 89

Xiao: add expander graphs here . 91
Xiao: Define the n-th successive minima. 92
Xiao: [BCM+18, Section 2.3] also contains a clean summarization of the LWE assumption. 95
Xiao: Key equations for lattice-based homomorphism . 97
Xiao: talk about code rate (or information rate) R. Fractional Hamming distance. δ-

distance code. 99
Xiao: to be done from Luca’s Lecture notes... Also, check the Gilbert-Varshamov bound

in Chapter 19.2 in [AB09]. 100
Xiao: Need to talk about the Folded Reed-Solomon code [GR08]. It is used in the recent

impressive work by Yamakawa and Zhandry [YZ22]. 101
Xiao: More coding theory stuff . 102
Xiao: On non-malleable code . 102
Xiao: randomized encodings . 102
Xiao: FiXme updates up to here . 105
Xiao: Proof outline . 107
Xiao: BQP is a promise language . 118
Xiao: t . 119
Xiao: citation . 131
Xiao: citation . 131
Xiao: But what does it mean in application when we use neglgible functions to capture

security level? . 132

155

	Contents
	Approximation
	The Uncommon Friends of Big O
	Soft-O, Quasi-Linear
	Quasi-Polynomial, Sub-Exponential and Complexity Leveraging
	The Iterated Logarithm

	Useful Asymptotics
	Harmonic Numbers
	Some Asymptotics from Taylor Series
	Stirling's Formula

	Bounds for Binomial Coefficients

	A Minimalist Treatise on Analysis
	Basic Concepts in Set Theory
	On Mathematical Spaces
	Three Major Spaces
	Topological Space
	Measure Space
	Metric Space

	Metric Space vs Topological Space
	Measure Space vs Topological Space
	Measure Space vs Metric Space

	Basic Concepts in Topology
	Basis and Local Basis
	Continuity and Compactness
	Dense Subsets

	Basic Concepts in Measure Theory
	-Algebra
	Borel -Algebra
	Measure and Measure Spaces
	Outer Measure and Carathéodory's extension theorem
	Borel-Cantelli Lemma
	The Second Borel-Cantelli Lemma
	Lp Space, p Space, and Hölder's Inequality
	Lp Space
	p Space
	Hölder's Inequality

	Basics Concepts in Metric Space and Functional Analysis
	Limit, Cauchy Sequence, and Completeness
	Motivation for Inner Product Space (and Hilbert Space)

	Algebra from a Modern Point of View
	Pre-Group Concepts
	Groups
	Quotient Groups
	Cyclic Groups
	Z _N, Z *_N, and RSA
	Quadratic Residuosity

	Rings
	Fields
	Modules and Vector Spaces
	Integral Domains
	Principal Ideal Domain (PID)
	Unique Factorization Domain (UFD)
	Euclidean Domain (ED) and GCD Domain

	Polynomials
	The Ring-Theory Definition
	Schwartz-Zipple lemma
	The Fundamental Theorem of Algebra
	On F _pn: An Application for FOCS:Sahai99 NIZK
	Shamir's Secret Sharing
	Verifiable Secret Sharing

	Discrete Fourier Transform

	Linear Algebra for Quantum Information Theory
	Linear Algebra 101
	The Second Nature
	High-Dimension Analog of the Imaginary Unit
	Inner Product Spaces and the Cauchy-Schwarz Inequality
	Direct Sum
	Tensor Products of Hilbert Spaces
	Mixed-Product Property of Kronecker Product
	Projectors and the Completeness Relation for Orthonormal Basis
	Normal Operators and Spectral Decomposition
	Spectral Decomposition and Eigenvalue Decomposition (Diagonalization) in General
	Jordan Normal Form
	Singular-Value Decomposition
	Two Ways to Formalize Partial Trace
	Unique Linear Extension of Convex Linear Operators
	Ajoint
	Bloch Coordinates

	Useful Geometric Properties of Vectors in Hilbert Space
	The Four Postulates of Quantum Mechanics
	POVMs and Projective Measurements
	Quantum Operations (aka Channels) from a Mathematical Point of View
	Stinespring's Representation of Quantum Channels
	Choi-Kraus Decomposition of Quantum Channels
	Axiomatic Definition of Quantum Operations (or the CPTP formalism)

	Quantum Fourier Transform
	(In)distinguishability of Quantum States
	Quantum Entropy
	Jordan's Lemma jordan1875essai
	Quantum Circuits
	Phase-Shift Gates
	Gates from a Group-Theory Viewpoint
	Universal Quantum Circuits

	Magic States, Quantum Teleportation, and Transversal Implementation of the T-gate
	The Theoretical Framework for Quantum Error Correction
	Bounds for QECC

	Supplementary Readings for Quantum Computation and Information

	Probability Theory
	The Second Nature
	The General Disjunction Rule of Events
	Union Bound and the Probabilistic Method
	Averaging Argument
	Exemplary Applications of the Averaging argument
	Another Example: Hardness Amplification from Weak OWFs to OWFs

	Berry-Esseen Theorem
	Concentration Bounds
	Markov Inequality
	Chebyshev Inequality
	Chernoff Bound
	An Exemplary Application of Concentrations Bounds: the Goldreich-Levin Theorem
	Hoeffding Inequality

	Stochastic Process
	Doob’s Martingale

	Coupon-Collection Problems

	Entropies
	Divergence
	Shanon Entropy and Friends
	Quantum Entropies
	Conditional Max and Min Entropies
	Entropic Uncertainty Relation
	Rényi's Family of Entropies

	Number Theory
	Prime Number Distribution
	Euler's Totient Function
	Quadratic Residues
	Composite Residues
	Chinese Remainder Theorem

	Hash Functions
	Collision Resistant Hash Family
	Merkle Hashing Trees and the Extraction Lemma

	Universal One-way Hash Family
	Universal Hash Family
	Pair-wise Independent Hash Family
	Bloom Filter

	Pseudorandomness
	Leftover Hash Lemma
	Randomness Extractors
	Expander Graphs

	Lattices
	Basic Concepts
	The ``Hard-Core'' on Lattices
	The Shortest Vector Problem

	Crypto-Friendly Lattice Problems
	Short Integer Solution (SIS)
	Ring-SIS
	Learning with Error (LWE)
	Learning with Rounding
	Ring-LWE

	Two Critical Equations for Lattice-Based Crypto
	Supplementary Readings

	Coding Theory
	Basic Concepts
	The Bounds
	Linear Codes
	Walsh-Hadamard Code
	Reed-Solomon Code
	Coding theory in general
	Non-malleable code
	Splite-state non-malleable code

	Randomized encoding (used in TCC:KhuOstSri18)

	(Classical) Complexity Theory
	The Basics
	Oblivious TM, Configuration Graphs and Snapshots
	Transformations between Different Computational Models

	Boolean Circuits
	Boolean Formulas, CNFs and Universal Gates
	NC and AC circuits
	Branching Program

	Hierarchy: A Fresh Perspective
	TM Hierarchy
	Circuit Hierarchy and Hard Functions

	Complete Languages: NP, PSPACE, NL and PH
	Important Languages and Their Implications

	Time-Space Trade off
	Relations among Complexity Classes

	Quantum Complexity Theory
	The Basics
	Hidden Subgroup Problem and Friends

	Proof Systems: Bridging Crypto and Complexity Theory
	PCP Theorem
	Exponential-Size PCP
	Polynomial-Size PCP

	PCP of Proximity
	Interactive Proofs and Arthur-Merlin Games
	Multi-Prover Interactive Proofs

	Cryptographic Reductions and Impossibility Results
	The TCC:ReiTreVad04 Taxonomy
	Fully-Black-Box Reductions
	Semi-Black-Box Reductions
	Relativizing Reductions (and ``Two-Oracle'' Reductions)

	Polynomial-Time Reductions with Expected Polynomial-Time Adversaries

	Miscellaneous
	Some Superfluous Notes on Negligible Functions
	On the Order of Quantifiers
	On the Threshold
	On the Summation of Negligible Functions

	Acknowledgments
	Bibliography
	FiXme Information

