The Watrous Post-Quantum Zero-Knowledge Proof

A Crypto Reading Group Talk

by

Xiao Liang

Stony Brook University and Max-Planck Institute (Security and Privacy)

Aug. 2nd, 2021

Git repo for these slides and LATEX source code: <https://github.com/xiao-liang/Talk-for-Watrous>

Post-Quantum ZK for NP

The model:

- \blacktriangleright Classical P and V
- \triangleright ZK system for NP languages
- $\blacktriangleright V^*$ can be quantum.
	- \triangleright Modeled as a quantum polynomial-time (OPT) Turing machine.
	- \blacktriangleright equivalently (and more preferred in quantum-computing literature), poly-size quantum circuits.
	- Non-uniformity: V^* has an auxiliary quantum state that depends only on the security para. n . More accurately,

$$
V^*=\{\mathsf{QC}_n,|\psi_n\rangle\}_{n\in\mathbb{N}}
$$

Post-Quantum (Black-Box) ZK Is Hard

Why's **rewinding** hard?

- \triangleright information gain VS state disturbance
- \blacktriangleright the no-cloning theorem

The major result in [\[Wat06\]](#page-21-0): a quantum rewinding lemma

Some Historical Notes

Techniques inspired by Marriot-Watrous [\[MW04\]](#page-21-1)

 \triangleright error-gap amplification for QMA using only 1 witness state

First published at STOC'06 [\[Wat06\]](#page-21-0)

- \triangleright Explicit connection to [\[MW04\]](#page-21-1)
- \blacktriangleright Simple, ad hoc proof
- \blacktriangleright This talk mainly focuses on this version
- \blacktriangleright The notation herein is consistent with this version

Then, on SIAM Journal of Computing in 2009 [\[Wat09\]](#page-21-2)

- Abstracts out a general quantum rewinding lemma
- \blacktriangleright Hides the connection with Marriot-Watrous
- \triangleright We'll also see the high-level idea of this version

Agenda for Today

 \triangleright Prove quantum ZK for the Graph Isomorphism protocol [\[GMW86\]](#page-21-3) (in detail)

- \triangleright Originally ad hoc [\[Wat06\]](#page-21-0)
- \triangleright We'll take a general perspective
- \triangleright Extends to the Graph-3-coloring Protocol [\[GMW86\]](#page-21-3) in the ideal Com model (simple)
	- \triangleright General quantum rewinding lemma
- ► G3C ZK with computationally-secure Com (simple-yet-tedious)
	- \blacktriangleright Rewinding lemma in its most general form allowing small perturbations
	- \blacktriangleright the widely-used version in crypto literature

GMW ZK for Graph Isomorphism (GI)

Some Remarks:

- \triangleright GI is not known to be NP-complete.
- \triangleright the 1st message of the GMW GI protocol is perfectly uniform.

Input for P: statement $(G_0, G_1) \in \mathcal{G}_n \times \mathcal{G}_n$, witness $w = \sigma$ s.t. $\sigma(G_1) = G_0$ **Input for** $V: (G_0, G_1)$

- 1. P samples $\pi \leftarrow S_n$, sends $H = \pi(G_0)$
- 2. *V* sends $a \leftarrow \{0, 1\}$
- 3. P sends $\tau = \pi \circ \sigma^a$

V's decision: accept iff $\tau(G_a) = H$

Classical Sim: guess the bit b. Set $H = \pi(G_b)$. Win if $b == a$.

Modeling in Quantum Way

Model a Quantum V^* : circuit family $\{V_H\}_{H \in \mathcal{G}_n}$, auxiliary input $|\psi\rangle$

- \blacktriangleright Receives H from P
- Perform $V_H |\psi\rangle_W |0\rangle_V |0\rangle_A = \alpha_0 |\psi_0\rangle_{WV} |0\rangle_A + \alpha_1 |\psi_1\rangle_{WV} |1\rangle_A$
	- \blacktriangleright V: work space
	- A: single-qubit register to store V^* 's challenge.
	- \triangleright Note that V_H operates on space W ⊗ V ⊗ A

Modeling in Quantum Way

View the protocol through a quantum lens:

- \triangleright The full space W \otimes X, where X = V \otimes A \otimes Y \otimes B \otimes Z
- \triangleright Sim performs (classical Sim in superposition)

$$
\mathbf{T} \left| 0 \right\rangle_{\mathsf{YBZ}} = \frac{1}{\sqrt{2n!}} \sum_{b \in \{0,1\}} \sum_{\pi \in S_n} \left| \pi(G_b) \right\rangle_{\mathsf{Y}} \left| b \right\rangle_{\mathsf{B}} \left| \pi \right\rangle_{\mathsf{Z}}
$$

- \blacktriangleright V apply $V = \sum_{H \in \mathcal{G}} V_H \otimes |H \rangle \langle H|_{\mathsf{Y}} \otimes \mathbb{1}_{\mathsf{BZ}}$ on the full space $\mathsf{W} \otimes \mathsf{X}$
	- recall that \overline{V}_H operates on $|\psi\rangle_W |0\rangle_V |0\rangle_A$
	- \triangleright corresponding to the exec. in super-position
	- \triangleright Output format:

 $\alpha_{00} |\psi_{00}\rangle |00\rangle_{AB} + \alpha_{01} |\psi_{01}\rangle |01\rangle_{AB} + \alpha_{10} |\psi_{10}\rangle |10\rangle_{AB} + \alpha_{11} |\psi_{11}\rangle |11\rangle_{AB}$

In summary, the protocol up to step 2 is:

$$
\underbrace{\mathbf{VT}}_{\text{on } W \otimes X} (\vert \psi \rangle_W \vert 0 \rangle_{X = VAYBZ}) \Leftrightarrow \underbrace{\mathbf{VT}(\mathbb{1}_W \otimes \vert 0 \rangle_X)}_{\text{only on } W} \vert \psi \rangle \tag{1}
$$

Measuring the Guess

Define a binary-outcome measurement on the full space $W \otimes X$:

 $\blacktriangleright \; \Pi_0 = |00\rangle\langle 00|_{AB} + |11\rangle\langle 11|_{AB} \, , \; \Pi_1 := \mathbbm{1}_{AB} - \Pi_0$

In work on the full space W \otimes X. Just tensor identities on registers other than AB

Performing $\{\Pi_0, \Pi_1\}$ on $\mathbf{VT}\ket{\psi}_{\mathsf{W}}\ket{0}_{\mathsf{X}}$:

- \blacktriangleright w.p. Tr $(\langle \psi | \mathbf{Q} | \psi \rangle)$, the outcome is 0.
- ► w.p. Tr $(\psi | (\mathbb{1}_W \mathbf{Q}) | \psi)$, the outcome is 1.

where $\mathbf{Q} = (\mathbb{1}_{\mathbf{W}} \otimes \langle 0|_{\mathbf{X}}) \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_0 \mathbf{T} \mathbf{V} (\mathbb{1}_{\mathbf{W}} \otimes |0\rangle_{\mathbf{X}})$. (See Expression [\(1\)](#page-7-0).)

Two important facts:

- $\blacktriangleright \{Q, \mathbb{1}_W Q\}$ form a POVM
- $\blacktriangleright \text{Tr} \left(\langle \psi | \mathbf{Q} | \psi \rangle \right) = \text{Tr} \left(\langle \psi | (\mathbb{1}_{\mathsf{W}} \mathbf{Q}) | \psi \rangle \right) = \frac{1}{2}$ $\frac{1}{2}$, independent of $|\psi\rangle$. (Cuz 1st msg. of GI prot. is perfectly uniform.)

$$
\Rightarrow \mathbf{Q} = \mathbb{1}_{\mathsf{W}} - \mathbf{Q} = \frac{1}{2} \mathbb{1}_{\mathsf{W}}
$$

An Important Lemma

Let $\Delta_0 \coloneqq \mathbb{1}_W \otimes |0\rangle\langle 0|_{\mathsf{X}}$. $\triangleright \Delta_0$ projects register X to all-0 qubits. $\blacktriangleright \ \Delta_0 = \Delta_0^\dagger$ $\boldsymbol{0}$ $\blacktriangleright \Delta_1 := \mathbb{I}_{\mathsf{W}\mathsf{X}} - \Delta_0$. The $\{\Delta_0, \Delta_1\}$ form a POVM.

Lemma 1:

For all $|\psi\rangle \in \mathcal{H}(W)$, $|\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ is an eigenvector of $\Delta_0^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_0 \mathbf{V} \mathbf{T} \Delta_0$ with $:=M$ corresponding eigenvalue $\lambda = 1/2$.

Proof. Recall $\mathbf{Q} = (\mathbb{1}_{\mathbf{W}} \otimes \langle 0|_{\mathbf{X}}) \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_{0} \mathbf{V} \mathbf{T} (\mathbb{1}_{\mathbf{W}} \otimes |0\rangle_{\mathbf{X}}) = \frac{1}{2} \mathbb{1}_{\mathbf{W}}.$

$$
\Rightarrow \Delta_0^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_0 \mathbf{V} \mathbf{T} \Delta_0 = (\mathbb{1}_{\mathsf{W}} \otimes |0\rangle_{\mathsf{X}}) \mathbf{Q} (\mathbb{1}_{\mathsf{W}} \otimes \langle 0|_{\mathsf{X}}) = \frac{1}{2} \mathbb{1}_{\mathsf{W}} \otimes |0\rangle \langle 0|_{\mathsf{X}}
$$

\n
$$
\Rightarrow \forall |\psi\rangle, \Delta_0^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_0 \mathbf{V} \mathbf{T} \Delta_0 \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_0\rangle} = (\frac{1}{2} \mathbb{1}_{\mathsf{W}} \otimes |0\rangle \langle 0|_{\mathsf{X}}) \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_0\rangle} = \frac{1}{2} \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_0\rangle}
$$

10 / 22

Marriot-Watrous Lemma

LEMMA 2: MARRIOT-WATROUS [\[MW04\]](#page-21-1)

Given unitary U, proj. mnt. $\{\Pi_0, \Pi_1\}$ and $\{\Delta_0, \Delta_1\}$. Assume $|\gamma_0\rangle$ is an evec. of $\Delta_0 \mathbf{U}^{\dagger} \Pi_0 \mathbf{U} \Delta_0$ with eval. λ . Define

$$
|\delta_0\rangle\coloneqq\frac{\Pi_0\mathbf{U}\,|\gamma_0\rangle}{\sqrt{\lambda}},\;\;|\delta_1\rangle\coloneqq\frac{\mathbf{\Pi}_0\mathbf{U}\,|\gamma_0\rangle}{\sqrt{1-\lambda}},\;\;|\gamma_1\rangle\coloneqq\frac{\mathbf{\Delta}_1\mathbf{U}^\dagger\,|\delta_0\rangle}{\sqrt{1-\lambda}}.
$$

Then, $\langle \gamma_0 | \gamma_1 \rangle = \langle \delta_0 | \delta_1 \rangle = 0$ and

$$
\begin{aligned}\n\mathbf{U} \left| \gamma_0 \right\rangle &= \sqrt{\lambda} \left| \delta_0 \right\rangle + \sqrt{1-\lambda} \left| \delta_1 \right\rangle \\
\mathbf{U} \left| \gamma_1 \right\rangle &= \sqrt{1-\lambda} \left| \delta_0 \right\rangle - \sqrt{\lambda} \left| \delta_1 \right\rangle \\
\mathbf{U} \left| \delta_1 \right\rangle &= \sqrt{1-\lambda} \left| \gamma_0 \right\rangle - \sqrt{\lambda} \left| \gamma_1 \right\rangle \\
\mathbf{U} \left| \delta_1 \right\rangle &= \sqrt{1-\lambda} \left| \gamma_0 \right\rangle - \sqrt{\lambda} \left| \gamma_1 \right\rangle\n\end{aligned}
$$

(draw the evolution diagram)

$$
|\gamma_0\rangle
$$
 $|\delta_0\rangle$ $|\gamma_0\rangle$ $|\delta_0\rangle$ $|\gamma_0\rangle$...

$$
|\delta_1\rangle \qquad |\gamma_1\rangle \qquad |\delta_1\rangle \qquad |\gamma_0\rangle \cdots
$$

In Our Setting: Marriot-Watrous + Post-Mnt. Selection

In our setting, we have $U = VT$, $\lambda = 1/2$, and $|\gamma_0\rangle = |\psi\rangle_w |0\rangle_x$ Lemma [2](#page-10-0) $\Rightarrow |\gamma_0\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}|\delta_0\rangle + \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $|\delta_1\rangle$, and the following:

$$
\left|\delta_0\right\rangle=\sqrt{2}\bm{\Pi}_0\bm{V}\bm{T}\left|\gamma_0\right\rangle,\quad \bm{T}^\dagger\bm{V}^\dagger\left|\delta_1\right\rangle=\frac{1}{\sqrt{2}}\left|\gamma_0\right\rangle-\frac{1}{\sqrt{2}}\left|\gamma_1\right\rangle,\quad \bm{V}\bm{T}(\frac{1}{\sqrt{2}}\left|\gamma_0\right\rangle+\frac{1}{\sqrt{2}}\left|\gamma_1\right\rangle)=\left|\delta_0\right\rangle
$$

Starting with $|\gamma_0\rangle \rightarrow \text{VT } |\gamma_0\rangle \rightarrow \text{measurement } \{\Pi_0, \Pi_1\}$:

- \blacktriangleright w.p. 1/2, it is $|\delta_0\rangle$ we are done!
- \blacktriangleright w.p. $1/2$, it is $|\delta_1\rangle$
	- Exercition: $\mathbf{T}^{\dagger} \mathbf{V}^{\dagger} | \delta_1 \rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2} \ket{\gamma_0} - \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\ket{\gamma_1}$
	- If we can flip the phase of the 2nd term \Rightarrow $\frac{1}{4}$ $\frac{1}{2}$ $\ket{\gamma_0} + \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ | γ_1 }.
	- Then, simply do $VT(\frac{1}{\sqrt{2}})$ $\frac{1}{2}$ $\ket{\gamma_0} + \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $|\gamma_1\rangle$ = $|\delta_0\rangle$

Yes, we can! (next slide)

Phase Flip for the 2nd Term

We want:
$$
\frac{1}{\sqrt{2}}|\gamma_0\rangle - \frac{1}{\sqrt{2}}|\gamma_1\rangle \rightarrow \frac{1}{\sqrt{2}}|\gamma_0\rangle + \frac{1}{\sqrt{2}}|\gamma_1\rangle
$$

\nRecall the following
\n $|\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ and $\Delta_0 = \mathbb{1}_W \otimes |0\rangle\langle 0|_X$
\n $\Rightarrow \Delta_0 |\gamma_0\rangle = |\gamma_0\rangle$
\nLemma 2 says $|\gamma_1\rangle = \sqrt{2}\Delta_1 \text{Tr}^{\dagger} \text{Tr}^{\dagger} |\delta_0\rangle \Rightarrow \Delta_0 |\gamma_1\rangle = 0$

Therefore, it is not hard to come up with the following idea:

$$
\underbrace{(2\Delta_0 - 1_{\text{WX}})}_{=\Delta_0 - \Delta_1} \left(\frac{1}{\sqrt{2}} \left| \gamma_0 \right\rangle - \frac{1}{\sqrt{2}} \left| \gamma_1 \right\rangle\right) = \frac{2}{\sqrt{2}} \Delta_0 \left| \gamma_0 \right\rangle - \frac{2}{\sqrt{2}} \Delta_0 \left| \gamma_1 \right\rangle - \frac{1}{\sqrt{2}} \left| \gamma_0 \right\rangle + \frac{1}{\sqrt{2}} \left| \gamma_1 \right\rangle
$$

$$
= \frac{2}{\sqrt{2}} \left| \gamma_0 \right\rangle - 0 - \frac{1}{\sqrt{2}} \left| \gamma_0 \right\rangle + \frac{1}{\sqrt{2}} \left| \gamma_1 \right\rangle
$$

$$
= \frac{1}{\sqrt{2}} \left| \gamma_0 \right\rangle + \frac{1}{\sqrt{2}} \left| \gamma_1 \right\rangle
$$

Summarizing the Watrous Simulator

Start with $|\gamma_0\rangle_{XW} = |\psi\rangle_X |0\rangle_W$

Perform VT $|\gamma_0\rangle_{\mathbf{X}\mathbf{W}}$

Perform measurement $\{\Pi_0, \Pi_1\}$

- If outcome is 0 guessed correctly (in $|\delta_0\rangle$). Go next step.
- Otherwise, we are in $|\delta_1\rangle = \sqrt{2}\Pi_1 V T |\gamma_0\rangle$.
	- Perform $\mathbf{T}^{\dagger} \mathbf{V}^{\dagger} | \delta_1 \rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\ket{\gamma_0}-\frac{1}{\sqrt{2}}$ $_{\overline{2}}\left\vert \gamma_{1}\right\rangle$
	- Perform $(2\Delta_0 \mathbb{1}_{\text{WX}})(\frac{1}{\sqrt{2}})$ $\frac{1}{2} \ket{\gamma_0} - \frac{1}{\sqrt{\gamma}}$ $\frac{1}{2} \ket{\gamma_1}) = \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\ket{\gamma_0} + \frac{1}{\sqrt{2}}$ $_{\overline{2}}\left\vert \gamma_{1}\right\rangle$
	- Perform $VT(\frac{1}{\sqrt{2}})$ $\frac{1}{2}$ $\ket{\gamma_0} + \frac{1}{\sqrt{2}}$ $\frac{1}{2} |\gamma_1\rangle$ = $|\delta_0\rangle$. Go next step.

 \triangleright Sim can finish the last round as the honest prover.

Extending to G3C—Idealized Com Model (1/3)

- \blacktriangleright The graph-3-coloring (G3C) problem is NP-complete
- \triangleright Start point: the G3C classical ZK proof from [\[GMW86\]](#page-21-3)

Caveats:

- \blacktriangleright Pr[Guess correctly] = $\frac{1}{m}$, where $m = \text{\# edges.}$
- \triangleright Pr[Guess correctly] \perp $|\psi\rangle$?
	- \triangleright Yes, if the 1st msg. is a perfect-hiding (PH) Com
		- \triangleright What about binding? Collapse-binding suffices [\[Unr16\]](#page-21-4)
	- \triangleright No, if the 1st Com msg. is only statistically/computationally-hiding.
	- I We assume an ideal Com for simplicity: perfect-hiding and perfectly-binding
	- \blacktriangleright Extends to comp.-hiding Com later

Extending to G3C—Idealized Com Model (2/3)

Key ingredients for the GI simulator:

- ► Define an operator: $\Delta_0^{\dagger}T^{\dagger}V^{\dagger}\Pi_0VT\Delta_0 (=: M)$
- An technical Lemma [1:](#page-9-0) $\lambda = \frac{1}{2}$ $\frac{1}{2}(\perp |\psi\rangle)$
- Invoke Marriot-Watrous Lemma [2](#page-10-0) with $\lambda = \frac{1}{2}$ $\frac{1}{2}$:
	- \triangleright Voilà \bigcirc ! We can get $|\delta_0\rangle$ within ≤ 2 steps

What will change for the G3C protocol?

- \triangleright M defined as before (w/ T and V modified in the natural way)
- **Lemma** [1:](#page-9-0) $\lambda = \frac{1}{n}$ $\frac{1}{m}$ $(\perp \psi)$
- Invoke Marriot-Watrous Lemma [2](#page-10-0) with $\lambda = \frac{1}{n}$ $\frac{1}{m}$:

 \triangleright \bigcirc ! no guarantee for $|\delta_0\rangle$ within < 2 steps

In Solution: use the full power of Matrriot-Watrous analysis (next slide).

Extending to G3C—Idealized Com Model (3/3)

(draw the evolution diagram in the current setting)

$$
|\gamma_0\rangle
$$
 $|\delta_0\rangle$ $|\gamma_0\rangle$ $|\delta_0\rangle$ $|\gamma_0\rangle$...
 $|\delta_1\rangle$ $|\gamma_1\rangle$ $|\delta_1\rangle$ $|\gamma_0\rangle$...

The main take-away:

$$
\triangleright \begin{array}{l}\n\mathbf{U}\left|\gamma_{0}\right\rangle = \sqrt{\lambda}\left|\delta_{0}\right\rangle + \sqrt{1-\lambda}\left|\delta_{1}\right\rangle & \mathbf{U}^{\dagger}\left|\delta_{0}\right\rangle = \sqrt{\lambda}\left|\gamma_{0}\right\rangle + \sqrt{1-\lambda}\left|\gamma_{1}\right\rangle, \\
\mathbf{U}\left|\gamma_{1}\right\rangle = \sqrt{1-\lambda}\left|\delta_{0}\right\rangle - \sqrt{\lambda}\left|\delta_{1}\right\rangle & \mathbf{U}^{\dagger}\left|\delta_{1}\right\rangle = \sqrt{1-\lambda}\left|\gamma_{0}\right\rangle - \sqrt{\lambda}\left|\gamma_{1}\right\rangle, \text{ where } \lambda = 1/m.\n\end{array}
$$

 \blacktriangleright Measure $\{\Pi_0, \Pi_1\}$ at each $|\delta\rangle$, if results in $|\delta_1\rangle$:

 \triangleright $\mathbf{U}(2\Delta_0 - 1)\mathbf{U}^{\dagger} |\delta_1\rangle = 2\sqrt{p(1-p)} |\delta_0\rangle + (1-2p)|\delta_1\rangle$

 \blacktriangleright Measure $\{\Pi_0, \Pi_1\}$. Go to $|\delta_1\rangle$ w.p. $(1-2p)$.

► Prob. for continuous failure after t iteration: $(1-p)(1-2p)^t$. Can be negl. by setting t properly.

The General Quantum Rewinding Lemma (Exact)

LEMMA 3: EXACT QUANTUM REWINDING [WAT09]

Q is a OC works on $|\psi\rangle$ and with Pr[success] = p ($\perp |\psi\rangle$) outputs $|\delta_0\rangle$. Then, for any $\epsilon > 0$, there exists another QC R of size

$$
O\left(\frac{\log(1/\varepsilon)}{p(1-p)} \cdot \text{size}(\mathbf{Q})\right)
$$

such that for every input $|\psi\rangle$, the output ρ of **R** satisfies $\langle \delta_0|\rho|\delta_0 \rangle \geq 1 - \varepsilon$.

- $\blacktriangleright \langle \delta_0 | \rho | \delta_0 \rangle$ = the squared *Fidelity* (i.e., $F^2(\rho, |\delta_0\rangle\langle \delta_0|)$)
	- \triangleright a metric for how close these two outputs are. (The closer to 1, the better)
	- relation to trace distance: $1 F(\rho_1, \rho_2) \le ||\rho_1 \rho_2||_{\text{tr}} \le \sqrt{1 F^2(\rho_1, \rho_2)}$
- \triangleright "Exact" refers to the face that $p \perp |\psi\rangle$.
- **►** The $\frac{\log(1/\varepsilon)}{p(1-p)}$: because we need a proper t to achieve a negl. failure prob.
- In Only need poly-size for a negligible ε .

G3C ZK with Comp.-Hiding Com

- ► (Sim's 1st msg.) $\stackrel{c}{\approx}$ (Prover's 1st msg.)
- \blacktriangleright (V^{*}'s challenge a) \perp (the 1st msg.)
- In Lemma [3,](#page-17-0) Pr[success] $= p(|\psi\rangle)$.
	- \blacktriangleright $p(|\psi\rangle)$ jiggles within an negl. small interval.
- \triangleright Need a version of Lemma [3](#page-17-0) allowing small perturbations

The Version Allowing Small Perturbations

LEMMA 4: QUANTUM REWINDING WITH SMALL PERTURBATIONS [WAT09, SEC. 4.2]

Let Q, $|\psi\rangle$, and $|\delta_0\rangle$ as before. But Pr[success] = $p(|\psi\rangle)$ now depends on $|\psi\rangle$. Let $p_0, q \in (0, 1)$ and $\varepsilon \in (0, 1/2)$ be real numbers such that (1). $|p(\psi) - q| < \varepsilon$ (2). $p_0 \leq p(\psi)$ (3). $p_0(1 - p_0) \leq q(1 - q)$ Then, for any $\varepsilon > 0$, there exists another QC R of size $O\left(\frac{\log(1/\varepsilon)}{n_0(1-n_0)}\right)$ $\frac{\log(1/\varepsilon)}{p_0(1-p_0)}\cdot\mathsf{size}(\mathbf{Q})\Big)$ such that for every input $|\psi\rangle$, the output ρ of **R** satisfies:

$$
F^{2}(\rho, |\delta_{0}\rangle\langle\delta_{0}|) = \langle \delta_{0}|\rho|\delta_{0}\rangle \ge 1 - 16\varepsilon \frac{\log^{2}(1/\varepsilon)}{p_{0}^{2}(1-p_{0})^{2}}.
$$

Proof at a high-level:

- \triangleright Consider each eigen-space separately (next slide).
- \triangleright For detailed calculation, see [\[Wat09,](#page-21-2) Sec. 4.2].

Proof Sketch for Lemma [4](#page-19-0)

Proof Sketch:

- In Lemma [1,](#page-9-0) $|\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ is no longer an evec. of M
	- **I** The reason: $|\psi\rangle_{W}$ is not an evec. of **Q**
- ► (mental exper.) Thus, decomp. $|\psi\rangle$ in the evecs $\{|\psi_i\rangle\}_{i\in[\text{dim}]}$ of Q
- \blacktriangleright (mental exper.) For each i, we obtain Lemmas [1](#page-9-0) and [2](#page-10-0)
- \blacktriangleright (mental exper.) In the Marriot-Watrous procedure, in each egein space:

 $\mathbf{V}\mathbf{T}\ket{\psi_i}_{\mathsf{W}}\ket{0}_{\mathsf{X}} = \sqrt{p(\ket{\psi_i})}\ket{\delta_0(\ket{\psi_i})} + \sqrt{1-p(\ket{\psi_i})}\ket{\delta_1(\ket{\psi_i})}$

- In (mental exper.) Define a unitary N such that for all $i \in [dim]$: $\sqrt{p(|\psi_i\rangle)} |\delta_0(|\psi_i\rangle\rangle + \sqrt{1-p(|\psi_i\rangle)} |\delta_1(|\psi_i\rangle\rangle\rangle \rightarrow \sqrt{q} |\delta_0(|\psi_i\rangle\rangle\rangle + \sqrt{1-q} |\delta_1(|\psi_i\rangle\rangle\rangle$
- \triangleright (mental exper.) Ready to apply the Exact Rewinding Lemma [3](#page-17-0) (w/ p_0 as we don't know p.) (Need $p_0(1 - p_0) \leq q(1 - q)$.)

In summary, this is a Sim w/ an imaginary operator N, giving the same trace bound as in Lemma [3.](#page-17-0) But for the real Sim, there is no N.

- \triangleright Doesn't matter. N only affects the trace bound negligibly.
- By tedious-yet-elementary linear algebra (see [Wat θ 9, Sec. 4.2]).

References

- [GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In *27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986*, pages 174–187. IEEE Computer Society, 1986.
- [MW04] Chris Marriott and John Watrous. Quantum arthur-merlin games. In *19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA*, pages 275–285. IEEE Computer Society, 2004.
- [Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and Jean-Sébastien Coron, editors, *Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II*, volume 9666 of *Lecture Notes in Computer Science*, pages 497–527. Springer, 2016.
- [Wat06] John Watrous. Zero-knowledge against quantum attacks. In Jon M. Kleinberg, editor, *Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006*, pages 296–305. ACM, 2006.
- [Wat09] John Watrous. Zero-knowledge against quantum attacks. *SIAM J. Comput.*, 39(1):25–58, 2009.