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Post-Quantum ZK for NP

The model:
I Classical P and V
I ZK system for NP languages
I V ∗ can be quantum.

I Modeled as a quantum polynomial-time (QPT) Turing machine.
I equivalently (and more preferred in quantum-computing literature), poly-size

quantum circuits.
I Non-uniformity: V ∗ has an auxiliary quantum state that depends only on the

security para. n. More accurately,

V ∗ = {QCn, |ψn〉}n∈N
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Post-Quantum (Black-Box) ZK Is Hard

Why’s rewinding hard?
I information gain VS state disturbance
I the no-cloning theorem

The major result in [Wat06]: a quantum rewinding lemma
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Some Historical Notes
Techniques inspired by Marriot-Watrous [MW04]
I error-gap amplification for QMA using only 1 witness state

First published at STOC’06 [Wat06]
I Explicit connection to [MW04]
I Simple, ad hoc proof
I This talk mainly focuses on this version
I The notation herein is consistent with this version

Then, on SIAM Journal of Computing in 2009 [Wat09]
I Abstracts out a general quantum rewinding lemma
I Hides the connection with Marriot-Watrous
I We’ll also see the high-level idea of this version
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Agenda for Today

I Prove quantum ZK for the Graph Isomorphism protocol [GMW86] (in detail)
I Originally ad hoc [Wat06]
I We’ll take a general perspective

I Extends to the Graph-3-coloring Protocol [GMW86] in the ideal Com model
(simple)
I General quantum rewinding lemma

I G3C ZK with computationally-secure Com (simple-yet-tedious)
I Rewinding lemma in its most general form — allowing small perturbations
I the widely-used version in crypto literature
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GMW ZK for Graph Isomorphism (GI)

Some Remarks:
I GI is not known to be NP-complete.
I the 1st message of the GMW GI protocol is perfectly uniform.

Input for P : statement (G0, G1) ∈ Gn × Gn, witness w = σ s.t. σ(G1) = G0

Input for V : (G0, G1)

1. P samples π ← Sn, sends H = π(G0)

2. V sends a← {0, 1}
3. P sends τ = π ◦ σa

V ’s decision: accept iff τ(Ga) = H

Classical Sim: guess the bit b. Set H = π(Gb). Win if b == a.
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Modeling in Quantum Way

Model a Quantum V ∗: circuit family {VH}H∈Gn , auxiliary input |ψ〉
I Receives H from P
I Perform VH |ψ〉W |0〉V |0〉A = α0 |ψ0〉WV |0〉A + α1 |ψ1〉WV |1〉A

I V: work space
I A: single-qubit register to store V ∗’s challenge.
I Note that VH operates on spaceW ⊗ V ⊗ A
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Modeling in Quantum Way
View the protocol through a quantum lens:
I The full spaceW ⊗ X, where X = V ⊗ A⊗ Y ⊗ B⊗ Z
I Sim performs (classical Sim in superposition)

T |0〉YBZ =
1√
2n!

∑
b∈{0,1}

∑
π∈Sn

|π(Gb)〉Y |b〉B |π〉Z

I V apply V =
∑

H∈GVH ⊗ |H〉〈H|Y ⊗ 1BZ on the full space W ⊗ X
I recall that VH operates on |ψ〉W |0〉V |0〉A
I corresponding to the exec. in super-position
I Output format:

α00 |ψ00〉 |00〉AB + α01 |ψ01〉 |01〉AB + α10 |ψ10〉 |10〉AB + α11 |ψ11〉 |11〉AB

In summary, the protocol up to step 2 is:

VT︸︷︷︸
on W⊗X

(|ψ〉W |0〉X=VAYBZ) ⇔ VT(1W ⊗ |0〉X)︸ ︷︷ ︸
only on W

|ψ〉 (1)
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Measuring the Guess
Define a binary-outcome measurement on the full spaceW ⊗ X:
I Π0 = |00〉〈00|AB + |11〉〈11|AB , Π1 := 1AB −Π0

I work on the full spaceW⊗ X. Just tensor identities on registers other than AB

Performing {Π0,Π1} on VT |ψ〉W |0〉X:
I w.p. Tr

(
〈ψ|Q |ψ〉

)
, the outcome is 0.

I w.p. Tr
(
〈ψ| (1W −Q) |ψ〉

)
, the outcome is 1.

where Q = (1W ⊗ 〈0|X)T†V†Π0TV(1W ⊗ |0〉X). (See Expression (1).)

Two important facts:
I {Q,1W −Q} form a POVM
I Tr

(
〈ψ|Q |ψ〉

)
= Tr

(
〈ψ| (1W −Q) |ψ〉

)
= 1

2
, independent of |ψ〉. (Cuz 1st

msg. of GI prot. is perfectly uniform.)
⇒ Q = 1W −Q = 1

2
1W
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An Important Lemma
Let ∆0 := 1W ⊗ |0〉〈0|X.
I ∆0 projects register X to all-0 qubits.
I ∆0 = ∆†0
I ∆1 := 1WX −∆0. The {∆0,∆1} form a POVM.

Lemma 1:

For all |ψ〉 ∈ H(W), |γ0〉 = |ψ〉W |0〉X is an eigenvector of ∆†0T
†V†Π0VT∆0︸ ︷︷ ︸

:=M

with

corresponding eigenvalue λ = 1/2.

Proof. Recall Q = (1W ⊗ 〈0|X)T†V†Π0VT(1W ⊗ |0〉X) =
1
2
1W.

⇒ ∆†0T
†V†Π0VT∆0 = (1W ⊗ |0〉X)Q(1W ⊗ 〈0|X) =

1

2
1W ⊗ |0〉〈0|X

⇒ ∀ |ψ〉 ,∆†0T†V†Π0VT∆0 |ψ〉W |0〉X︸ ︷︷ ︸
|γ0〉

=
(1
2
1W ⊗ |0〉〈0|X

)
|ψ〉W |0〉X︸ ︷︷ ︸
|γ0〉

=
1

2
|ψ〉W |0〉X︸ ︷︷ ︸
|γ0〉
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Marriot-Watrous Lemma
Lemma 2: Marriot-Watrous [MW04]

Given unitary U, proj. mnt. {Π0,Π1} and {∆0,∆1}. Assume |γ0〉 is an evec. of ∆0U
†Π0U∆0 with

eval. λ. Define

|δ0〉 :=
Π0U |γ0〉√

λ
, |δ1〉 :=

Π0U |γ0〉√
1− λ

, |γ1〉 :=
∆1U

† |δ0〉√
1− λ

.

Then, 〈γ0|γ1〉 = 〈δ0|δ1〉 = 0 and

U |γ0〉 =
√
λ |δ0〉+

√
1− λ |δ1〉 U† |δ0〉 =

√
λ |γ0〉+

√
1− λ |γ1〉

U |γ1〉 =
√
1− λ |δ0〉 −

√
λ |δ1〉 U† |δ1〉 =

√
1− λ |γ0〉 −

√
λ |γ1〉

(draw the evolution diagram)

|γ0〉 |δ0〉 |γ0〉 |δ0〉 |γ0〉 · · ·

|δ1〉 |γ1〉 |δ1〉 |γ0〉 · · ·
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In Our Setting: Marriot-Watrous + Post-Mnt. Selection

In our setting, we have U = VT, λ = 1/2, and |γ0〉 = |ψ〉W |0〉X
Lemma 2 ⇒ |γ0〉 = 1√

2
|δ0〉+ 1√

2
|δ1〉, and the following:

|δ0〉 =
√
2Π0VT |γ0〉 , T†V† |δ1〉 =

1√
2
|γ0〉 −

1√
2
|γ1〉 , VT(

1√
2
|γ0〉+

1√
2
|γ1〉) = |δ0〉

Starting with |γ0〉 → VT |γ0〉 → measurement {Π0,Π1}:
I w.p. 1/2, it is |δ0〉—we are done!
I w.p. 1/2, it is |δ1〉

I Key observation: T†V† |δ1〉 = 1√
2
|γ0〉 − 1√

2
|γ1〉

I If we can flip the phase of the 2nd term⇒ 1√
2
|γ0〉+ 1√

2
|γ1〉.

I Then, simply do VT( 1√
2
|γ0〉+ 1√

2
|γ1〉) = |δ0〉

Yes, we can! (next slide)
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Phase Flip for the 2nd Term
We want: 1√

2
|γ0〉 − 1√

2
|γ1〉 → 1√

2
|γ0〉+ 1√

2
|γ1〉

Recall the following
I |γ0〉 = |ψ〉W |0〉X and ∆0 = 1W ⊗ |0〉〈0|X
I ⇒ ∆0 |γ0〉 = |γ0〉
I Lemma 2 says |γ1〉 =

√
2∆1T

†V† |δ0〉 ⇒ ∆0 |γ1〉 = 0

Therefore, it is not hard to come up with the following idea:

(2∆0 − 1WX)︸ ︷︷ ︸
=∆0−∆1

(
1√
2
|γ0〉 −

1√
2
|γ1〉) =

2√
2
∆0 |γ0〉 −

2√
2
∆0 |γ1〉 −

1√
2
|γ0〉+

1√
2
|γ1〉

=
2√
2
|γ0〉 − 0− 1√

2
|γ0〉+

1√
2
|γ1〉

=
1√
2
|γ0〉+

1√
2
|γ1〉
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Summarizing the Watrous Simulator

I Start with |γ0〉XW = |ψ〉X |0〉W
I Perform VT |γ0〉XW
I Perform measurement {Π0,Π1}

I If outcome is 0 — guessed correctly (in |δ0〉). Go next step.
I Otherwise, we are in |δ1〉 =

√
2Π1VT |γ0〉.

I Perform T†V† |δ1〉 = 1√
2
|γ0〉 − 1√

2
|γ1〉

I Perform (2∆0 − 1WX)(
1√
2
|γ0〉 − 1√

2
|γ1〉) = 1√

2
|γ0〉+ 1√

2
|γ1〉

I Perform VT( 1√
2
|γ0〉+ 1√

2
|γ1〉) = |δ0〉. Go next step.

I Sim can finish the last round as the honest prover.
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Extending to G3C—Idealized Com Model (1/3)

I The graph-3-coloring (G3C) problem is NP-complete
I Start point: the G3C classical ZK proof from [GMW86]

Caveats:
I Pr[Guess correctly] = 1

m
, wherem = # edges.

I Pr[Guess correctly] ⊥ |ψ〉?
I Yes, if the 1st msg. is a perfect-hiding (PH) Com

I What about binding? — Collapse-binding suffices [Unr16]
I No, if the 1st Com msg. is only statistically/computationally-hiding.
I We assume an ideal Com for simplicity: perfect-hiding and perfectly-binding
I Extends to comp.-hiding Com later
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Extending to G3C—Idealized Com Model (2/3)

Key ingredients for the GI simulator:
I Define an operator: ∆†0T

†V†Π0VT∆0 (=: M)
I An technical Lemma 1: λ = 1

2
(⊥ |ψ〉)

I Invoke Marriot-Watrous Lemma 2 with λ = 1
2
:

I Voilà ! We can get |δ0〉 within ≤ 2 steps

What will change for the G3C protocol?
I M defined as before (w/ T and V modified in the natural way)
I Lemma 1: λ = 1

m
(⊥ |ψ〉)

I Invoke Marriot-Watrous Lemma 2 with λ = 1
m
:

I ! no guarantee for |δ0〉 within ≤ 2 steps
I Solution: use the full power of Matrriot-Watrous analysis (next slide).
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Extending to G3C—Idealized Com Model (3/3)
(draw the evolution diagram in the current setting)

|γ0〉 |δ0〉 |γ0〉 |δ0〉 |γ0〉 · · ·

|δ1〉 |γ1〉 |δ1〉 |γ0〉 · · ·

The main take-away:

I U |γ0〉 =
√
λ |δ0〉+

√
1− λ |δ1〉 U† |δ0〉 =

√
λ |γ0〉+

√
1− λ |γ1〉

U |γ1〉 =
√
1− λ |δ0〉 −

√
λ |δ1〉 U† |δ1〉 =

√
1− λ |γ0〉 −

√
λ |γ1〉

, where λ = 1/m.

I Measure {Π0,Π1} at each |δ〉, if results in |δ1〉:
I U(2∆0 − 1)U† |δ1〉 = 2

√
p(1− p) |δ0〉+ (1− 2p) |δ1〉

I Measure {Π0,Π1}. Go to |δ1〉 w.p. (1− 2p).
I Prob. for continuous failure after t iteration: (1− p)(1− 2p)t. Can be negl. by

setting t properly.
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The General Quantum Rewinding Lemma (Exact)
Lemma 3: Exact Quantum Rewinding [Wat09]

Q is a QC works on |ψ〉 and with Pr[success] = p (⊥ |ψ〉) outputs |δ0〉. Then, for any
ε > 0, there exists another QC R of size

O

(
log(1/ε)

p(1− p)
· size(Q)

)
such that for every input |ψ〉, the output ρ of R satisfies 〈δ0|ρ|δ0〉 ≥ 1− ε.

I 〈δ0|ρ|δ0〉 = the squared Fidelity (i.e., F 2(ρ, |δ0〉〈δ0|))
I a metric for how close these two outputs are. (The closer to 1, the better)
I relation to trace distance: 1− F (ρ1, ρ2) ≤ ‖ρ1 − ρ2‖tr ≤

√
1− F 2(ρ1, ρ2)

I “Exact” refers to the face that p ⊥ |ψ〉.
I The log(1/ε)

p(1−p) : because we need a proper t to achieve a negl. failure prob.
I Only need poly-size for a negligible ε.
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G3C ZK with Comp.-Hiding Com

I (Sim’s 1st msg.)
c
≈ (Prover’s 1st msg.)

I (V ∗’s challenge a) 6⊥ (the 1st msg.)
I In Lemma 3, Pr[success] = p(|ψ〉).

I p(|ψ〉) jiggles within an negl. small interval.
I Need a version of Lemma 3 allowing small perturbations
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The Version Allowing Small Perturbations

Lemma 4: Quantum Rewinding with Small Perturbations [Wat09, Sec. 4.2]

Let Q, |ψ〉, and |δ0〉 as before. But Pr[success] = p(|ψ〉) now depends on |ψ〉.
Let p0, q ∈ (0, 1) and ε ∈ (0, 1/2) be real numbers such that

(1). |p(ψ)− q| < ε (2). p0 ≤ p(ψ) (3). p0(1− p0) ≤ q(1− q)

Then, for any ε > 0, there exists another QC R of size O
(

log(1/ε)
p0(1−p0) · size(Q)

)
such that for every input |ψ〉, the output ρ of R satisfies:

F 2(ρ, |δ0〉〈δ0|) = 〈δ0|ρ|δ0〉 ≥ 1− 16ε
log2(1/ε)

p20(1− p0)2
.

Proof at a high-level:
I Consider each eigen-space separately (next slide).
I For detailed calculation, see [Wat09, Sec. 4.2].
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Proof Sketch for Lemma 4
Proof Sketch:
I In Lemma 1, |γ0〉 = |ψ〉W |0〉X is no longer an evec. of M

I The reason: |ψ〉W is not an evec. of Q

I (mental exper.) Thus, decomp. |ψ〉 in the evecs {|ψi〉}i∈[dim] of Q

I (mental exper.) For each i, we obtain Lemmas 1 and 2
I (mental exper.) In the Marriot-Watrous procedure, in each egein space:

VT |ψi〉W |0〉X =
√
p(|ψi〉) |δ0(|ψi〉)〉+

√
1− p(|ψi〉) |δ1(|ψi〉)〉

I (mental exper.) Define a unitary N such that for all i ∈ [dim]:√
p(|ψi〉) |δ0(|ψi〉)〉+

√
1− p(|ψi〉) |δ1(|ψi〉)〉 →

√
q |δ0(|ψi〉)〉+

√
1− q |δ1(|ψi〉)〉

I (mental exper.) Ready to apply the Exact Rewinding Lemma 3 (w/ p0 as we
don’t know p.) (Need p0(1− p0) ≤ q(1− q).)

In summary, this is a Sim w/ an imaginary operator N, giving the same trace bound
as in Lemma 3. But for the real Sim, there is no N.
I Doesn’t matter. N only affects the trace bound negligibly.
I By tedious-yet-elementary linear algebra (see [Wat09, Sec. 4.2]).
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