The Watrous Post-Quantum Zero-Knowledge Proof

A Crypto Reading Group Talk

by

Xiao Liang

STONY BROOK UNIVERSITY and Max-Planck Institute (Security and Privacy)

Aug. 2nd, 2021

Git repo for these slides and LATEX source code: https://github.com/xiao-liang/Talk-for-Watrous

Post-Quantum ZK for NP

The model:

- \blacktriangleright Classical P and V
- ZK system for NP languages
- \blacktriangleright V^* can be quantum.
 - Modeled as a quantum polynomial-time (QPT) Turing machine.
 - equivalently (and more preferred in quantum-computing literature), poly-size quantum circuits.
 - Non-uniformity: V* has an auxiliary quantum state that depends only on the security para. n. More accurately,

$$V^* = \{\mathsf{QC}_n, |\psi_n\rangle\}_{n \in \mathbb{N}}$$

Post-Quantum (Black-Box) ZK Is Hard

Why's **rewinding** hard?

- ► information gain VS state disturbance
- the no-cloning theorem

The major result in [Wat06]: a quantum rewinding lemma

Some Historical Notes

Techniques inspired by Marriot-Watrous [MW04]

error-gap amplification for QMA using only 1 witness state

First published at STOC'06 [Wat06]

- Explicit connection to [MW04]
- Simple, ad hoc proof
- This talk mainly focuses on this version
- ► The notation herein is consistent with this version

Then, on SIAM Journal of Computing in 2009 [Wat09]

- Abstracts out a general quantum rewinding lemma
- Hides the connection with Marriot-Watrous
- We'll also see the high-level idea of this version

Agenda for Today

Prove quantum ZK for the Graph Isomorphism protocol [GMW86] (in detail)

- Originally ad hoc [Wat06]
- We'll take a general perspective
- Extends to the Graph-3-coloring Protocol [GMW86] in the ideal Com model (simple)
 - General quantum rewinding lemma
- ► G3C ZK with computationally-secure Com (simple-yet-tedious)
 - Rewinding lemma in its most general form allowing small perturbations
 - the widely-used version in crypto literature

GMW ZK for Graph Isomorphism (GI)

Some Remarks:

- ► GI is not known to be NP-complete.
- ▶ the 1st message of the GMW GI protocol is perfectly uniform.

Input for *P*: statement $(G_0, G_1) \in \mathcal{G}_n \times \mathcal{G}_n$, witness $w = \sigma$ s.t. $\sigma(G_1) = G_0$ **Input for** *V*: (G_0, G_1)

- 1. P samples $\pi \leftarrow S_n$, sends $H = \pi(G_0)$
- 2. V sends $a \leftarrow \{0, 1\}$
- 3. *P* sends $\tau = \pi \circ \sigma^a$

V's decision: accept iff $\tau(G_a) = H$

Classical Sim: guess the bit b. Set $H = \pi(G_b)$. Win if b == a.

Modeling in Quantum Way

Model a Quantum V^* : circuit family $\{\mathbf{V}_H\}_{H \in \mathcal{G}_n}$, auxiliary input $|\psi\rangle$

- Receives H from P
- $\blacktriangleright \text{ Perform } \mathbf{V}_{H} |\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{V}} |0\rangle_{\mathsf{A}} = \alpha_{0} |\psi_{0}\rangle_{\mathsf{WV}} |0\rangle_{\mathsf{A}} + \alpha_{1} |\psi_{1}\rangle_{\mathsf{WV}} |1\rangle_{\mathsf{A}}$
 - ► V: work space
 - A: single-qubit register to store V^* 's challenge.
 - Note that \mathbf{V}_H operates on space $\mathsf{W} \otimes \mathsf{V} \otimes \mathsf{A}$

Modeling in Quantum Way

View the protocol through a quantum lens:

- ▶ The full space $W \otimes X$, where $X = V \otimes A \otimes Y \otimes B \otimes Z$
- Sim performs (classical Sim in superposition)

$$\mathbf{T} \left| 0 \right\rangle_{\mathsf{YBZ}} = \frac{1}{\sqrt{2n!}} \sum_{b \in \{0,1\}} \sum_{\pi \in S_n} \left| \pi(G_b) \right\rangle_{\mathsf{Y}} \left| b \right\rangle_{\mathsf{B}} \left| \pi \right\rangle_{\mathsf{Z}}$$

- ► V apply $\mathbf{V} = \sum_{H \in \mathcal{G}} \mathbf{V}_H \otimes |H\rangle \langle H|_{\mathsf{Y}} \otimes \mathbb{1}_{\mathsf{BZ}}$ on the full space $\mathsf{W} \otimes \mathsf{X}$
 - recall that \mathbf{V}_H operates on $|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{V}} |0\rangle_{\mathsf{A}}$
 - corresponding to the exec. in super-position
 - Output format:

 $\alpha_{00} \left| \psi_{00} \right\rangle \left| 00 \right\rangle_{\mathsf{AB}} + \alpha_{01} \left| \psi_{01} \right\rangle \left| 01 \right\rangle_{\mathsf{AB}} + \alpha_{10} \left| \psi_{10} \right\rangle \left| 10 \right\rangle_{\mathsf{AB}} + \alpha_{11} \left| \psi_{11} \right\rangle \left| 11 \right\rangle_{\mathsf{AB}}$

In summary, the protocol up to step 2 is:

$$\underbrace{\mathbf{VT}}_{\text{on } W \otimes X} (|\psi\rangle_{W} |0\rangle_{X=VAYBZ}) \Leftrightarrow \underbrace{\mathbf{VT}(\mathbb{1}_{W} \otimes |0\rangle_{X})}_{\text{only on } W} |\psi\rangle \tag{1}$$

Measuring the Guess

Define a binary-outcome measurement on the full space $W \otimes X$:

- $\blacktriangleright \ \mathbf{\Pi}_0 = |00\rangle\!\langle 00|_{\mathsf{AB}} + |11\rangle\!\langle 11|_{\mathsf{AB}}, \ \mathbf{\Pi}_1 \coloneqq \mathbb{1}_{\mathsf{AB}} \mathbf{\Pi}_0$
- \blacktriangleright work on the full space W \otimes X. Just tensor identities on registers other than AB

Performing $\{\Pi_0, \Pi_1\}$ on $\mathbf{VT} \ket{\psi}_{\mathsf{W}} \ket{0}_{\mathsf{X}}$:

- w.p. Tr ($\langle \psi | \mathbf{Q} | \psi \rangle$), the outcome is 0.
- w.p. Tr $(\langle \psi | (\mathbb{1}_{\mathsf{W}} \mathbf{Q}) | \psi \rangle)$, the outcome is 1.

where $\mathbf{Q} = (\mathbb{1}_{\mathsf{W}} \otimes \langle 0 |_{\mathsf{X}}) \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_{0} \mathbf{T} \mathbf{V} (\mathbb{1}_{\mathsf{W}} \otimes |0\rangle_{\mathsf{X}})$. (See Expression (1).)

Two important facts:

- $\blacktriangleright \ \{\mathbf{Q}, \mathbb{1}_{\mathsf{W}} \mathbf{Q}\} \text{ form a POVM}$
- ► Tr $(\langle \psi | \mathbf{Q} | \psi \rangle)$ = Tr $(\langle \psi | (\mathbb{1}_{\mathsf{W}} \mathbf{Q}) | \psi \rangle)$ = $\frac{1}{2}$, independent of $|\psi\rangle$. (Cuz 1st msg. of GI prot. is perfectly uniform.)

$$\Rightarrow \mathbf{Q} = \mathbb{1}_{\mathsf{W}} - \mathbf{Q} = \frac{1}{2}\mathbb{1}_{\mathsf{W}}$$

An Important Lemma

Let $\Delta_0 := \mathbb{1}_W \otimes |0\rangle \langle 0|_X$. $\blacktriangleright \Delta_0$ projects register X to all-0 qubits. $\blacktriangleright \Delta_0 = \Delta_0^{\dagger}$ $\blacktriangleright \Delta_1 := \mathbb{1}_{WX} - \Delta_0$. The $\{\Delta_0, \Delta_1\}$ form a POVM. LEMMA 1: For all $|\psi\rangle \in \mathcal{H}(W), |\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ is an eigenvector of $\underbrace{\Delta_0^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_0 \mathbf{V} \mathbf{T} \Delta_0}_{:=\mathbf{M}}$ with corresponding eigenvalue $\lambda = 1/2$.

Proof. Recall $\mathbf{Q} = (\mathbb{1}_{\mathsf{W}} \otimes \langle 0 |_{\mathsf{X}}) \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_{0} \mathbf{V} \mathbf{T} (\mathbb{1}_{\mathsf{W}} \otimes |0\rangle_{\mathsf{X}}) = \frac{1}{2} \mathbb{1}_{\mathsf{W}}.$

$$\Rightarrow \quad \mathbf{\Delta}_{0}^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_{0} \mathbf{V} \mathbf{T} \mathbf{\Delta}_{0} = (\mathbb{1}_{\mathsf{W}} \otimes |0\rangle_{\mathsf{X}}) \mathbf{Q} (\mathbb{1}_{\mathsf{W}} \otimes \langle 0|_{\mathsf{X}}) = \frac{1}{2} \mathbb{1}_{\mathsf{W}} \otimes |0\rangle \langle 0|_{\mathsf{X}}$$

$$\Rightarrow \quad \forall |\psi\rangle, \mathbf{\Delta}_{0}^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \mathbf{\Pi}_{0} \mathbf{V} \mathbf{T} \mathbf{\Delta}_{0} \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_{0}\rangle} = \left(\frac{1}{2} \mathbb{1}_{\mathsf{W}} \otimes |0\rangle \langle 0|_{\mathsf{X}}\right) \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_{0}\rangle} = \frac{1}{2} \underbrace{|\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}}}_{|\gamma_{0}\rangle}$$

10/22

Marriot-Watrous Lemma

LEMMA 2: MARRIOT-WATROUS [MW04]

Given unitary U, proj. mnt. { Π_0, Π_1 } and { Δ_0, Δ_1 }. Assume $|\gamma_0\rangle$ is an evec. of $\Delta_0 U^{\dagger} \Pi_0 U \Delta_0$ with eval. λ . Define

$$|\delta_0\rangle \coloneqq \frac{\mathbf{\Pi}_0 \mathbf{U} |\gamma_0\rangle}{\sqrt{\lambda}}, \ |\delta_1\rangle \coloneqq \frac{\mathbf{\Pi}_0 \mathbf{U} |\gamma_0\rangle}{\sqrt{1-\lambda}}, \ |\gamma_1\rangle \coloneqq \frac{\mathbf{\Delta}_1 \mathbf{U}^{\dagger} |\delta_0\rangle}{\sqrt{1-\lambda}}$$

Then, $\langle \gamma_0 | \gamma_1 \rangle = \langle \delta_0 | \delta_1 \rangle = 0$ and

(draw the evolution diagram)

$$|\gamma_0\rangle$$
 $|\delta_0\rangle$ $|\gamma_0\rangle$ $|\delta_0\rangle$ $|\gamma_0\rangle$...

$$|\delta_1\rangle$$
 $|\gamma_1\rangle$ $|\delta_1\rangle$ $|\gamma_0\rangle$ \cdots

In Our Setting: Marriot-Watrous + Post-Mnt. Selection

In our setting, we have $\mathbf{U} = \mathbf{VT}$, $\lambda = 1/2$, and $|\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ Lemma 2 $\Rightarrow |\gamma_0\rangle = \frac{1}{\sqrt{2}} |\delta_0\rangle + \frac{1}{\sqrt{2}} |\delta_1\rangle$, and the following:

$$\left|\delta_{0}\right\rangle = \sqrt{2}\mathbf{\Pi}_{0}\mathbf{V}\mathbf{T}\left|\gamma_{0}\right\rangle, \quad \mathbf{T}^{\dagger}\mathbf{V}^{\dagger}\left|\delta_{1}\right\rangle = \frac{1}{\sqrt{2}}\left|\gamma_{0}\right\rangle - \frac{1}{\sqrt{2}}\left|\gamma_{1}\right\rangle, \quad \mathbf{V}\mathbf{T}\left(\frac{1}{\sqrt{2}}\left|\gamma_{0}\right\rangle + \frac{1}{\sqrt{2}}\left|\gamma_{1}\right\rangle\right) = \left|\delta_{0}\right\rangle$$

Starting with $|\gamma_0\rangle \rightarrow \mathbf{VT} |\gamma_0\rangle \rightarrow \text{measurement } \{\mathbf{\Pi}_0, \mathbf{\Pi}_1\}$:

- w.p. 1/2, it is $|\delta_0\rangle$ we are done!
- w.p. 1/2, it is $|\delta_1\rangle$
 - Key observation: $\mathbf{T}^{\dagger} \mathbf{V}^{\dagger} | \delta_1 \rangle = \frac{1}{\sqrt{2}} | \gamma_0 \rangle \frac{1}{\sqrt{2}} | \gamma_1 \rangle$
 - If we can flip the phase of the 2nd term $\Rightarrow \frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle$.
 - Then, simply do $\mathbf{VT}(\frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle) = |\delta_0\rangle$

Yes, we can! (next slide)

Phase Flip for the 2nd Term

We want:
$$\frac{1}{\sqrt{2}} |\gamma_0\rangle - \frac{1}{\sqrt{2}} |\gamma_1\rangle \rightarrow \frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle$$

Recall the following

$$\begin{aligned} & |\gamma_0\rangle = |\psi\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}} \text{ and } \boldsymbol{\Delta}_0 = \mathbb{1}_{\mathsf{W}} \otimes |0\rangle \langle 0|_{\mathsf{X}} \\ & \Rightarrow \boldsymbol{\Delta}_0 |\gamma_0\rangle = |\gamma_0\rangle \\ & \bullet \text{ Lemma 2 says } |\gamma_1\rangle = \sqrt{2} \boldsymbol{\Delta}_1 \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} |\delta_0\rangle \Rightarrow \boldsymbol{\Delta}_0 |\gamma_1\rangle = 0 \end{aligned}$$

Therefore, it is not hard to come up with the following idea:

$$\underbrace{(2\Delta_0 - \mathbb{1}_{\mathsf{WX}})}_{=\Delta_0 - \Delta_1} \left(\frac{1}{\sqrt{2}} |\gamma_0\rangle - \frac{1}{\sqrt{2}} |\gamma_1\rangle\right) = \frac{2}{\sqrt{2}}\Delta_0 |\gamma_0\rangle - \frac{2}{\sqrt{2}}\Delta_0 |\gamma_1\rangle - \frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle$$
$$= \frac{2}{\sqrt{2}} |\gamma_0\rangle - 0 - \frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle$$
$$= \frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle$$

Summarizing the Watrous Simulator

• Start with $|\gamma_0\rangle_{XW} = |\psi\rangle_X |0\rangle_W$

 $\blacktriangleright \text{ Perform } \mathbf{VT} |\gamma_0\rangle_{\mathsf{XW}}$

• Perform measurement $\{\Pi_0, \Pi_1\}$

- If outcome is 0 guessed correctly (in $|\delta_0\rangle$). Go next step.
- Otherwise, we are in $|\delta_1\rangle = \sqrt{2} \Pi_1 \mathbf{VT} |\gamma_0\rangle$.
 - Perform $\mathbf{T}^{\dagger}\mathbf{V}^{\dagger}|\delta_{1}\rangle = \frac{1}{\sqrt{2}}|\gamma_{0}\rangle \frac{1}{\sqrt{2}}|\gamma_{1}\rangle$
 - Perform $(2\Delta_0 \mathbb{I}_{WX})(\frac{1}{\sqrt{2}}|\gamma_0\rangle \frac{1}{\sqrt{2}}|\gamma_1\rangle) = \frac{1}{\sqrt{2}}|\gamma_0\rangle + \frac{1}{\sqrt{2}}|\gamma_1\rangle$
 - Perform $\mathbf{VT}(\frac{1}{\sqrt{2}} |\gamma_0\rangle + \frac{1}{\sqrt{2}} |\gamma_1\rangle) = |\delta_0\rangle$. Go next step.

Sim can finish the last round as the honest prover.

Extending to G3C—Idealized Com Model (1/3)

- ► The graph-3-coloring (G3C) problem is NP-complete
- Start point: the G3C classical ZK proof from [GMW86]

Caveats:

- $\Pr[\text{Guess correctly}] = \frac{1}{m}$, where m = # edges.
- $\blacktriangleright \operatorname{Pr}[\operatorname{Guess \ correctly}] \perp |\psi\rangle?$
 - Yes, if the 1st msg. is a perfect-hiding (PH) Com
 - ▶ What about binding? Collapse-binding suffices [Unr16]
 - ▶ No, if the 1st Com msg. is only statistically/computationally-hiding.
 - ▶ We assume an ideal Com for simplicity: perfect-hiding and perfectly-binding
 - Extends to comp.-hiding Com later

Extending to G3C—Idealized Com Model (2/3)

Key ingredients for the GI simulator:

- Define an operator: $\Delta_0^{\dagger} \mathbf{T}^{\dagger} \mathbf{V}^{\dagger} \Pi_0 \mathbf{V} \mathbf{T} \Delta_0 (=: \mathbf{M})$
- An technical Lemma 1: $\lambda = \frac{1}{2} (\perp |\psi\rangle)$
- Invoke Marriot-Watrous Lemma 2 with $\lambda = \frac{1}{2}$:
 - ► Voilà \bigcirc ! We can get $|\delta_0\rangle$ within ≤ 2 steps

What will change for the G3C protocol?

- \blacktriangleright M defined as before (w/ T and V modified in the natural way)
- Lemma 1: $\lambda = \frac{1}{m} (\perp |\psi\rangle)$
- Invoke Marriot-Watrous Lemma 2 with $\lambda = \frac{1}{m}$:

▶ 2! no guarantee for $|\delta_0\rangle$ within ≤ 2 steps

Solution: use the full power of Matrriot-Watrous analysis (next slide).

Extending to G3C—Idealized Com Model (3/3)

(draw the evolution diagram in the current setting)

$$|\gamma_0
angle \qquad |\delta_0
angle \qquad |\gamma_0
angle \qquad |\delta_0
angle \qquad |\gamma_0
angle \ \cdots$$

The main take-away:

•
$$\mathbf{U} |\gamma_0\rangle = \sqrt{\lambda} |\delta_0\rangle + \sqrt{1-\lambda} |\delta_1\rangle$$
 $\mathbf{U}^{\dagger} |\delta_0\rangle = \sqrt{\lambda} |\gamma_0\rangle + \sqrt{1-\lambda} |\gamma_1\rangle$, where $\lambda = 1/m$.
 $\mathbf{U} |\gamma_1\rangle = \sqrt{1-\lambda} |\delta_0\rangle - \sqrt{\lambda} |\delta_1\rangle$ $\mathbf{U}^{\dagger} |\delta_1\rangle = \sqrt{1-\lambda} |\gamma_0\rangle - \sqrt{\lambda} |\gamma_1\rangle$,

• Measure $\{\Pi_0, \Pi_1\}$ at each $|\delta\rangle$, if results in $|\delta_1\rangle$:

 $\mathbf{V} \left(2\mathbf{\Delta}_0 - \mathbb{1} \right) \mathbf{U}^{\dagger} \left| \delta_1 \right\rangle = 2\sqrt{p(1-p)} \left| \delta_0 \right\rangle + (1-2p) \left| \delta_1 \right\rangle$

• Measure $\{\Pi_0, \Pi_1\}$. Go to $|\delta_1\rangle$ w.p. (1-2p).

Prob. for continuous failure after t iteration: $(1-p)(1-2p)^t$. Can be negl. by setting t properly.

The General Quantum Rewinding Lemma (Exact)

LEMMA 3: EXACT QUANTUM REWINDING [WAT09]

Q is a QC works on $|\psi\rangle$ and with $\Pr[\text{success}] = p(\perp |\psi\rangle)$ outputs $|\delta_0\rangle$. Then, for any $\varepsilon > 0$, there exists another QC **R** of size

$$O\left(\frac{\log(1/\varepsilon)}{p(1-p)} \cdot \mathsf{size}(\mathbf{Q})\right)$$

such that for every input $|\psi\rangle$, the output ρ of **R** satisfies $\langle \delta_0 | \rho | \delta_0 \rangle \geq 1 - \varepsilon$.

- $\langle \delta_0 | \rho | \delta_0 \rangle$ = the squared *Fidelity* (i.e., $F^2(\rho, |\delta_0\rangle\langle\delta_0|)$)
 - a metric for how close these two outputs are. (The closer to 1, the better)
 - ► relation to trace distance: $1 F(\rho_1, \rho_2) \le \|\rho_1 \rho_2\|_{tr} \le \sqrt{1 F^2(\rho_1, \rho_2)}$
- "Exact" refers to the face that $p \perp |\psi\rangle$.
- The $\frac{\log(1/\varepsilon)}{p(1-p)}$: because we need a proper t to achieve a negl. failure prob.
- Only need poly-size for a negligible ε .

G3C ZK with Comp.-Hiding Com

- (Sim's 1st msg.) $\stackrel{c}{\approx}$ (Prover's 1st msg.)
- (V*'s challenge a) $\not\perp$ (the 1st msg.)
- In Lemma 3, $\Pr[\text{success}] = p(|\psi\rangle)$.
 - $p(|\psi\rangle)$ jiggles within an negl. small interval.
- Need a version of Lemma 3 allowing small perturbations

The Version Allowing Small Perturbations

LEMMA 4: QUANTUM REWINDING WITH SMALL PERTURBATIONS [WAT09, SEC. 4.2]

Let \mathbf{Q} , $|\psi\rangle$, and $|\delta_0\rangle$ as before. But $\Pr[\operatorname{success}] = p(|\psi\rangle)$ now depends on $|\psi\rangle$. Let $p_0, q \in (0, 1)$ and $\varepsilon \in (0, 1/2)$ be real numbers such that $(1). |p(\psi) - q| < \varepsilon$ (2). $p_0 \leq p(\psi)$ (3). $p_0(1 - p_0) \leq q(1 - q)$ Then, for any $\varepsilon > 0$, there exists another QC \mathbf{R} of size $O\left(\frac{\log(1/\varepsilon)}{p_0(1-p_0)} \cdot \operatorname{size}(\mathbf{Q})\right)$ such that for every input $|\psi\rangle$, the output ρ of \mathbf{R} satisfies:

$$F^{2}(\rho, |\delta_{0}\rangle\langle\delta_{0}|) = \langle\delta_{0}|\rho|\delta_{0}\rangle \ge 1 - 16\varepsilon \frac{\log^{2}(1/\varepsilon)}{p_{0}^{2}(1-p_{0})^{2}}.$$

Proof at a high-level:

- Consider each eigen-space separately (next slide).
- ► For detailed calculation, see [Wat09, Sec. 4.2].

Proof Sketch for Lemma 4

Proof Sketch:

- ► In Lemma 1, $|\gamma_0\rangle = |\psi\rangle_W |0\rangle_X$ is no longer an evec. of M
 - The reason: $|\psi\rangle_{\mathsf{W}}$ is not an evec. of \mathbf{Q}
- (mental exper.) Thus, decomp. $|\psi\rangle$ in the evecs $\{|\psi_i\rangle\}_{i\in[\mathsf{dim}]}$ of Q
- (mental exper.) For each i, we obtain Lemmas 1 and 2
- (mental exper.) In the Marriot-Watrous procedure, in each egein space:

 $\mathbf{VT} |\psi_i\rangle_{\mathsf{W}} |0\rangle_{\mathsf{X}} = \sqrt{p(|\psi_i\rangle)} |\delta_0(|\psi_i\rangle)\rangle + \sqrt{1 - p(|\psi_i\rangle)} |\delta_1(|\psi_i\rangle)\rangle$

- (mental exper.) Define a unitary N such that for all $i \in [\text{dim}]$: $\sqrt{p(|\psi_i\rangle)} |\delta_0(|\psi_i\rangle)\rangle + \sqrt{1 - p(|\psi_i\rangle)} |\delta_1(|\psi_i\rangle)\rangle \rightarrow \sqrt{q} |\delta_0(|\psi_i\rangle)\rangle + \sqrt{1 - q} |\delta_1(|\psi_i\rangle)\rangle$
- (mental exper.) Ready to apply the Exact Rewinding Lemma 3 (w/ p_0 as we don't know p.) (Need $p_0(1-p_0) \le q(1-q)$.)

In summary, this is a Sim w/ an imaginary operator N, giving the same trace bound as in Lemma 3. But for the real Sim, there is no N.

- Doesn't matter. N only affects the trace bound negligibly.
- ▶ By tedious-yet-elementary linear algebra (see [Wat09, Sec. 4.2]).

References

- [GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 174–187. IEEE Computer Society, 1986.
- [MW04] Chris Marriott and John Watrous. Quantum arthur-merlin games. In 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 275–285. IEEE Computer Society, 2004.
- [Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 497–527. Springer, 2016.
- [Wat06] John Watrous. Zero-knowledge against quantum attacks. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 296–305. ACM, 2006.
- [Wat09] John Watrous. Zero-knowledge against quantum attacks. *SIAM J. Comput.*, 39(1):25–58, 2009.