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Abstract of the Dissertation

Black-Box Secure Multi-Party Computation: New Possibilities and Limitations

by

Xiao Liang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2021

Secure multi-party computation (MPC) allows two or more mutually distrustful parties
to compute any functionality without compromising the privacy of their inputs. It has been
an important theme in this area to obtain constructions that make only black-box use of
their cryptographic building blocks. Such constructions are usually preferable since their
efficiency is not affected by the implementation details of the underlying primitives.

New Black-Box Constructions of MPC. We present new composable MPC protocols
that makes only black-box access to lower-level primitives. In particular:

– We construct a black-box MPC protocol which remains secure under (a-priori) bounded-
concurrent composition. Prior to our work, constructions of such protocols required non-
black-box usage of cryptographic primitives; alternatively, black-box constructions could
only be achieved for super-polynomial simulation based notions of security, which offers
incomparable security guarantees.

Our protocol has a constant number of rounds and relies on the existence of semi-honest
oblivious transfers and collision-resistant hash functions. Previously, such protocols were
not known even under sub-exponential assumptions.

– We present a black-box MPC protocol with Õ(log λ) rounds achieving angel-based uni-
versal composability, or more precisely, composability with super-polynomial helpers. In
this notion, both the simulator and the adversary are given access to an oracle called an
angel that can perform some predefined super-polynomial time task. Angel-based security
maintains the attractive properties of the universal composition framework while providing
meaningful security guarantees in complex environments without having to trust anyone.

Our construction is obtained under the minimal assumption of semi-honest oblivious trans-
fer. Prior to our work, there exist black-box constructions in Õ(log2 λ) rounds and non-

black-box constructions in Õ(log λ) rounds. Thus, we close the gap between these two
types of protocols.
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Zero-Knowledge with Stronger Black-Box Properties. Zero-Knowledges Proofs are
of great importance both as a building block for MPC and a stand-alone primitive. Next,
we explore the (im)possibility of zero-knowledge proofs with a strong black-box property.

General-purpose zero-knowledge proofs inherently require the code of the relation to
be proven. As shown by Rosulek (Crypto’12), zero-knowledge proofs for even simple
statements, such as membership in the range of a one-way function, require non-black-box
access. In this work, we propose an alternative approach to bypass Rosulek’s impossibility
result. Instead of asking for a ZK proof directly for the given one-way function f , we seek
to construct a new one-way function F given only black-box access to f , and an associated
ZK protocol for proving non-trivial statements, such as range membership, over its output.
We say that F , along with its proof system, is a proof-based one-way function. We similarly
define proof-based versions of other primitives, specifically pseudo-random generators and
collision-resistant hash functions.

We show how to construct proof-based versions of each of the primitives mentioned above
from their ordinary counterparts under mild but necessary restrictions over the input. More
specifically,

– We first show that if the prover entirely chooses the input, then proof-based pseudo-
random generators cannot be constructed from ordinary ones in a black-box manner, thus
establishing that some restrictions over the input are necessary.

– We next present black-box constructions handling inputs of the form (x, r) where r is
chosen uniformly by the verifier. This is similar to the restrictions in the widely used
Goldreich-Levin theorem. The associated ZK proofs support range membership over the
output as well as arbitrary predicates over prefixes of the input.

Our results open up the possibility that general-purpose ZK proofs for relations that require
black-box access to the primitives above may be possible in the future without violating their
black-box nature by instantiating them using proof-based primitives instead of ordinary ones.
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4.1 Overview of Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 CCA Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Angel-Based Universally Composable (or UC-SPS) MPC . . . . . . . 89

4.3 A New CCA1:1 Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Proof for Synchronous Adversaries . . . . . . . . . . . . . . . . . . . 95
4.3.2 Proof for Non-synchronous Adversaries . . . . . . . . . . . . . . . . . 101

4.4 Our Black-Box CCA Commitment . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 Black-Box Commit-and-Prove ZKAoK . . . . . . . . . . . . . . . . . . 106
4.4.2 Black-Box Instantiation of Our CCA1:1 Commitment . . . . . . . . . 112
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Chapter 1

Introduction

Secure multi-party computation (MPC) enables two or more mutually distrustful parties to
compute any functionality without compromising the privacy of their inputs. Introduced in
the innovative works of [Yao86, GMW87], this model has since received significant atten-
tion. Due to its generality, the setting of MPC can capture almost every cryptographic task.
During the past decades, the efforts invested in this topic have led to numerous new re-
sults and beautiful techniques that benefit most (if not all) branches of cryptography. Thus,
understanding the nature of MPC (e.g. its power, limits, and computation/communication
complexity) is always of fundamental importance to the theory of cryptography. Moreover,
the new millennium has witnessed significant progress in constructing efficient MPC proto-
cols (see the recent survey [HHNZ19]), transforming the theory to pragmatic technologies
that are even being commercialized by multiple companies.

An important factor influencing the efficiency of MPC is how the protocols make use of
their building blocks. A cryptographic construction (not limited to MPC protocols) is black-
box if it does not refer to the code of any cryptographic primitive it uses, and only depends
on their input/output behavior. Such constructions are typically much more efficient than
comparable non-black-box constructions, as they avoid expensive non-black-box operations
such as running zero-knowledge protocols or circuit-garbling schemes on other cryptographic
primitives. Also, they remain valid even if the building block is based on a physical object
such as a noisy-channel or tamper-proof hardware [Wyn75, CK88, GLM+04]. Furthermore,
black-box constructions inherently ask us to reduce a cryptographic problem to basic and
general hardness assumptions1, thus leading to solutions addressing the essence of the given
task. Indeed, starting from the seminal paper of Impagliazzo and Rudich [IR89], a rich
line of work has developed rigorous methodologies to characterize the (im)possibility and
(in)efficiency of black-box constructions (e.g., [Sim98, GKM+00, GT00, GMR01, GGK03,
RTV04, HR04, BM07, BM09, BBF13, Haj18, GHMM18]). Many insightful results have been
obtained in this direction, shaping and re-shaping our view of cryptography.

It has been an important theme to improve the performance of MPC protocols by de-
veloping black-box techniques (e.g., [IPS08, IKOS07, GOSV14, KOS18]). But there are still
some settings where only non-black-box constructions are known. This work seeks to further
our understanding of efficient MPC constructions by narrowing the gap between black-box

1In contrast to specific hardness assumptions such as discrete log, factoring, and RSA.
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and non-black-box constructions. In the remainder of this chapter, we will first provide
background information and then summarize our contributions.

1.1 Background

The Simulation Paradigm. Formalizing the security requirement of MPC is not an easy
task. Consider the setting where m parties (P1, . . . , Pm) want to evaluate a function f(~x) on
their corresponding private inputs ~x = (x1, . . . , xm) such that party Pi learns (only) the i-th
component of f(~x). Intuitively, a proper definition of MPC should (at least) guarantee:

– Correctness: the output of learned by each party is distributed according to the pre-
scribed function f(·); and

– Privacy: the parties that do not follow the protocol honestly learn nothing other than
their prescribed output.

This intuition was formalized using the so-called “simulation paradigm”, which was originally
developed to capture the notion of zero-knowledge [GMR85, GMR89]. Given a protocol Π
that purports to implement f , this paradigm compares two worlds:

– In the real world, the m parties with their own input interact with each other following
the protocol Π. Some of them might be corrupted by an adversary A. If a party Pi is
corrupted, we assume that all its input, randomness and internal states are exposed to A;
and A controls the behavior of Pi during the execution of Π.

– In the ideal world, each party simply sends its input to an idealized functionality F . F
is incorruptible. It will compute the function f properly and deliver the outputs to each
party. Note that in this execution, there is no interactions among the parties, and each
party learns nothing more than its input and the prescribed output (and the information
that can be inferred). So, this ideal-world execution is considered as the most secure
scenario that one can hope for.

It is then reasonable to believe that Π is secure if any adversary A participating in the real
execution of Π can do no more harm than in an ideal-world execution. Formally, we imagine
a simulator in the ideal world, who “corrupts” the same parties that are controlled by A in
the real world. If any information learned by A can be generated (or “simulated”) by this
simulator in the ideal-world execution, then we can safely think that A gains nothing useful
by corrupting those parties. That is, the protocol is secure.

Stand-Alone Security. The most basic security notion for MPC is known as stand-alone
security, which guarantees the privacy of honest parties for a single execution of the under-
lying protocol. Early constructions of general-purpose2 MPC (in this stand-alone setting)
were non-black-box in nature, particularly due to NP-reductions required by underlying
zero-knowledge proofs [GMW87]. Specifically, zero-knowledge (ZK) proofs enable each party
to prove that he/she follows the protocol without revealing its private input and internal

2An MPC protocol is general-purpose if it can be used to compute any efficiently-computable function-
alities.
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states. This enforces honest behaviors of the parties while maintaining their privacy. How-
ever, this technique incurs expensive computation: MPC constructions usually make use
of other cryptography primitives such as commitments and oblivious transfers; running ZK
proofs for statements like “I perform the commitment honestly” is inefficient because (1)
these primitives themselves are usually complex; and (2) general-purpose ZK proofs are typ-
ically designed for some NP complete language; converting such statements to an instances
of the suitable NP complete language incurs huge overhead.

Due to the above drawback of non-black-box techniques, a beautiful line of work pur-
suits efficient constructions making only black-box use of other cryptographic primitives.
Ishai et al. [IKLP06] presented the first black-box construction of general-purpose MPC
based on enhanced trapdoor permutations or homomorphic public-key encryption schemes.
This, together with the subsequent work of Haitner [Hai08], provided a black-box construc-
tion of a general MPC protocol under minimal assumptions of semi-honest oblivious trans-
fer (OT). The round complexity of black-box MPC was improved to O(log∗ n) rounds34

by Wee [Wee10], and to constant rounds by Goyal [Goy11]. Very recently, Applebaum et
al. [ABG+20] showed that 2-round MPC is unachievable by making only black-box use of
2-round OT. For two-party computations (2PCs), a constant round construction was first
obtained by Pass and Wee [PW09]; subsequently a 5-round construction was given by Os-
trovsky, Richelson, and Scafuro [ORS15], which is optimal w.r.t. black-box proof techniques
[KO04].

Composable Security (in the Plain Model). While stand-alone security suffices for
many applications, stronger notions of security are required for complex environments such
as the Internet, where several MPC protocols may run concurrently. This setting is often
referred to as the concurrent setting. Unfortunately, as shown by Feige and Shamir [FS90],
stand-alone security does not necessarily imply security in the concurrent setting. To address
this issue, Canetti [Can01] proposed the notion of universally-composable (UC) security
which has two important properties: concurrent security and modular analysis. The former
means that UC secure protocols maintain their security in the presence of other concurrent
protocols, and the latter means that the security of a larger protocol in the UC framework can
be derived from the UC security of its component protocols. This latter property is stated as
a composition theorem which, roughly speaking, states that UC is closed under concurrent
composition. These properties make UC the dream notion for composable security. It is
also worth noting that UC is actually the “minimal” requirement for any meaningful notion
of composable security [Lin03b]. Thus, it is fair to say that UC is “the correct” security
definition for general protocol composition.

Unfortunately, UC security turns out to be impossible in the plain model5 for most tasks
[Can01, CF01, CKL03]. Relaxations of UC that consider composing the same protocol were
also ruled out by Lindell [Lin03a, Lin04]. Moreover, [Lin03b] showed that any definition
(with polynomial-time adversaries) seeking general composability in an ideal-real framework

3For n ≥ 1, log∗ n denotes the iterated logarithm of n, which can be evaluated by solving the recurrence
relation log∗ n = 1 + log(log∗ n), with the base case being log∗ 1 = 0.

4We remark that the n denotes the number of parties, not the security parameter.
5Indeed, in the common reference string model, any polynomial-time functionality can be UC-computed,

for any number of corrupted parties [CLOS02].
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would suffer from the same impossibility results as the ordinary UC notion. We remark that
these impossibility results hold even for non-black-box simulations (and constructions).

These strong negative results motivated the search for relaxed (but still appealing) notions
of composable security by6:

1. resorting to weaker notions such as bounded concurrency [Bar02, Pas04b], input indistin-
guishability [MPR06], or a combination thereof [GGJ13]; or

2. endowing more power to the simulator, e.g., super-polynomial running time [Pas03, PS04,
BDH+17], or the ability to receive multiple outputs [GJO10, GJ13].

Same as in the stand-alone setting, black-box techniques are critical to the efficiency of
composable MPC. As we will show in Section 1.2 and Section 1.3, both of the above directions
leave interesting open questions regarding black-box constructions to be answered.

1.2 Bounded-Concurrent MPC

In the bounded-concurrent model, a bound m is fixed a-priori, and the protocol design may
depend on m. The adversary is allowed to participate in at most m simultaneous executions
of the same protocol. We consider security against dishonest majority with interchangeable
roles, i.e., the adversary can choose an arbitrary subset of (all but one) parties to corrupt in
each session7. As in the original (unbounded) setting, the ideal-world simulator is required
to run in (expected) polynomial time. That is, we put an upper bound on the number of
sessions the protocol can securely compute; other than that, we do not give up anything
on the security requirements. Due to the a-priori bound, it is feasible to bypass the afore-
mentioned negative results. Lindell [Lin03a] presented a m-bounded concurrent two-party
protocol in O(m) rounds using black-box simulation. Subsequently, Pass and Rosen [PR03]
presented a constant-round two-party protocol, and Pass [Pas04b] a constant round MPC
protocol (under improved assumptions), using non-black-box simulation. All general-purpose
secure-computation protocols in this setting make non-black-box use of the underlying cryp-
tographic primitives. Therefore, we wonder if it is possible to do the same but in a black-box
manner:

Question 1: Can we construct constant-round bounded-concurrent MPC making
only black-box use of other primitives?

The state-of-the-art non-black-box construction in [Pas04b] relies on collision-resistant
hash functions (CRHFs) and (enhanced) trapdoor permutations (TDPs). Ideally, we want
a black-box version of it making the same (or even weaker) assumptions.

6Another important approach is to introduce setup assumptions such as common reference strings. The
current work only focuses on solutions in the plain model. Also, we refer the reader to [BS05, Section 1.1]
for a thorough summary of relevant models.

7A formal treatment of this model is provided in Section 3.2.3.
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1.3 Angel-Based Universally-Composable MPC

Roughly speaking, angel-based UC security is the same as UC security except that it allows
the simulator as well as the adversary access to a super-polynomial resource called an “angel”
which can perform a pre-defined task such as inverting a one-way function8. Due to the super-
polynomial power of the simulator (from the angel), one can hope to circumvent the lower
bounds for UC-secure constructions without setup.

We remark that although weaker than the standard UC security, this angel-based UC
notion provides meaningful security guarantees in many settings. For example, because the
angels can be implemented in super-polynomial time, angel-based security implies super-
polynomial-time-simulation (SPS) security [Pas03, BS05], a model where the simulator is
allowed to run in super-polynomial time. That means angel-based UC security guarantees
that whatever an adversary can do in the real world can also be done in the ideal world in
super-polynomial time. Because the ideal-world functionalities usually provide information-
theoretic security, the simulator (aka the ideal-world adversary) can do no harm even with
super-polynomial power9. Furthermore, akin to the standard UC security, different protocols
achieving angel-based UC security w.r.t. the same angel can be composed safely. In contrast,
SPS security does not guarantee composability of (even) the same protocols.

Early constructions of angel-based security were based on non-standard/super-polynomial
hardness assumptions [PS04, BS05, MMY06]. The beautiful work of Canetti, Lin, and Pass
[CLP10] presented the first construction under polynomial hardness assumptions, and the

subsequent work of Goyal et al. [GLP+15] improved the round complexity to Õ(log λ) under
general assumptions, where λ denotes the security parameter. Lin and Pass [LP12] gave
the first black-box construction under the (minimal) assumption of semi-honest OT. The
main drawback of [LP12] is that it requires polynomially many rounds even if the underly-
ing OT protocol has constant rounds. To address this issue, Kiyoshima [Kiy14] presented a

Õ(log2 λ)-round construction assuming constant-round semi-honest OT. Therefore, there is
still a log(λ) gap between the black-box and non-black-box constructions of angel-based UC
MPC under standard assumptions. It is then interesting to ask if we can close this gap:

Question 2: Assuming (only) the existence of constant-round semi-honest OT,

can we have a black-box construction for Õ(log λ)-round MPC satisfying the angel-
based UC security?

We remark that Broadnax et al. [BDH+17] present a constant-round black-box con-
struction for (the weaker but still composable) shielded-oracle security, utilizing prior work
by Hazay and Venkitasubramaniam [HV15] who provide a constant-round protocol in the
CRS-hybrid model; however, they require stronger assumptions, specifically, homomorphic
commitments and public-key encryption with oblivious public-key generation.

8A formal treatment of the Angel-Based UC model is provided in Section 4.2.2.
9The introduction of [PS04] contains a thorough discussion about the meaningfulness of SPS security.
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1.4 Functionally-Black-Box Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) are one of the most important building blocks for secure MPC.
Optimizing the performance of ZKPs is of great importance to build better MPC protocols.
Moreover, ZKPs have found numerous applications beyond MPC. ZKP itself is an interesting
topic that forms a rich area of research. Therefore, investigating the (im)possibility of
zero-knowledge proofs with better efficiency and security (e.g., non-malleablity, resettability,
preciseness, etc.) is interesting on its own.

A significant achievement in cryptography has been the construction of ZKPs for NP-
complete problems [GMW86]. Since every NP relation can be efficiently reduced to any
NP-complete relation [Coo71, Kar72, Lev73], this yields a ZKP for all languages in NP. Due
to this reason, ZKPs for NP-complete problems are often called general-purpose proofs. As
evidenced by numerous follow-up works, general-purpose proofs have been incredibly useful
to the theory of cryptography.

Early constructions of general-purpose ZKPs required only black-box access to any one-
way function (OWF), i.e., they used the given OWF as an oracle. A black-box construction
of this kind thus depends only on the input/output behavior of the given cryptographic
primitive. In particular, it is independent of the specific implementation (or code) of the
primitive.

A black-box construction is often preferred over a non-black one due to its attractive
properties. For example, it remains valid even if the primitive/oracle is based on a physical
object such as a noisy-channel or tamper-proof hardware [Wyn75, CK88, GLM+04]. Also,
its efficiency does not depend on the implementation details of the primitive; thus, efficiency
can be theoretically independent of the primitive’s code.

Unfortunately, general-purpose proofs are unsuitable when seeking a black-box construc-
tion for some desired cryptographic task since they inherently require the full code of the
underlying relation to perform the NP reduction. In other words, if the relation requires
black-box access to a OWF, the code of the OWF must be known even though neither the
ZKP nor the relation needs it. In fact, this has been the main reason for the non-black-box
nature of many cryptographic constructions that are otherwise optimal. Analogous black-
box constructions often require significant effort and technical innovation, as evidenced by
the secure computation literature, e.g., [Kil88, DI05, IKLP06, IKOS07, Hai08, IPS08, PW09,
Wee10, Goy11, GLOV12, LP12, Kiy14, GGMP16, HV16b, GKP18, CLP20a, GLPV20].

In light of the above situation, it is tempting to imagine a “dream version” of general-
purpose proofs where, if the underlying relation R requires black-box access to a crypto-
graphic function f , say from a specified class such as the class of OWFs, then so should the
general-purpose ZKP for proving membership in R. We informally refer to such relations
as black-box relations. Such a result, if possible, would greatly simplify the task of future
black-box constructions and potentially unify the diverse set of techniques that exist in this
area.

As one might suspect, this dream version is too good to be true. In his beautiful work,
Rosulek [Ros12] rules out ZKPs for proving membership in the range of a OWF f given as an
oracle. More specifically, assuming injective OWFs, Rosulek rules out (even honest-verifier)
witness-hiding protocols [FS90] for the relation Rf = {(y, x) | y = f(x)} where f is chosen
from the class of all OWFs and provided as an oracle to the protocol.
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In contrast to the negative result for OWFs, a large body of literature constructs so-called
black-box commit-and-prove protocols [IKOS07, GLOV12, GOSV14, HV18, KOS18, Kiy20].
Informally speaking, a commit-and-prove protocol between a committer and a receiver en-
sures that at the end of the protocol, the committer is committed to some hidden value
satisfying a predefined property. This primitive can be constructed with only black-box
access to an ordinary commitment scheme which may originally not support any proofs
whatsoever. In many situations, commit-and-prove protocols serve as a good substitute
for ordinary commitments; moreover, their ability to support proofs over committed values
makes them a great tool for constructing larger black-box protocols.

In hindsight, we can view black-box commit-and-prove protocols as an alternative to
bypass the aforementioned negative result of [Ros12]. That is, instead of constructing ZKP
directly for every OWF, we ask the following indirect question:

Question 3: Given only black-box access to an OWF f , can we construct a new
OWF F and a ZKP system ΠF for proving membership in the range of F?

Of course, we can ask for general properties instead of merely range membership.
The idea is that F can be used as a substitute for f in any computation C(·) that

requires only black-box access to OWFs. More importantly, it gives hope that general-
purpose black-box ZKPs for proving the correctness of computation C(·) may be possible
since the correctness of responses from F can be ensured using ΠF , all while requiring
only black-box access to f . We remark that we do not obtain such a result for general
computations in this work and merely point out that the existence of (F,ΠF ) may open a
path towards it.

We call the pair (F,ΠF ) a proof-based one-way function (PB-OWF). Analogously, we con-
sider proof-based versions of other primitives, specifically pseudo-random generators (PRGs)
and collision-resistant hash functions (CRHFs). Motivated by the aforementioned possibility
of a general-purpose proof system for black-box cryptographic computations C(·), this work
initiates a study of black-box constructions of proof-based cryptographic primitives.

1.5 Our Contributions

The current thesis contains a set of results that answer the aforementioned three questions.

1.5.1 For Question 1

To answer Question 1, we seek to construct general-purpose MPC protocols that make
only black-box use of cryptographic primitives and remain secure under bounded-concurrent
self composition. Furthermore, we seek constructions whose security can be proven under
standard polynomial hardness assumptions (although, to the best of our knowledge, such
protocols are not known even under, say, sub-exponential assumptions since the simulator
must still run in polynomial time).

Towards this goal, we first aim to construct a black-box bounded-concurrent oblivious
transfer (OT) protocol. At a high level, this construction relies on non-black-box simulation
to handle simulation in the bounded-concurrent setting (along the lines of [Bar01, Pas04b]);

7



to ensure that this does not result in non-black-box use of cryptographic primitives, we
implement this idea using the “black-box non-black-box” protocol of Goyal et al. [GOSV14].
Once we have control over bounded-concurrent simulation, we rely on the OT protocol
of Garg et al. [GKP18] to achieve the full oblivious transfer functionality. Unfortunately,
implementing this idea is somewhat complex, perhaps in part because abstractions such
as “straight-line simulation/extraction” are not straightforward to formalize despite their
intuitive appeal. We mitigate this situation by defining a new abstraction which we call
(bounded) robust zero-knowledge; this notion asks for simulators to work even in the presence
of (bounded) external communication which cannot be “rewound” (and therefore, looks very
close to UC zero-knowledge [Can01]). Similar notion has been defined by [LP09] in the
context of non-malleable commitment w.r.t. an external party. Zero-knowledge (ZK) with
this robust property allows us to combine the non-black-box simulation techniques with the
SPS based proof techniques of [GKP18] to achieve black-box bounded-concurrent OT. An
additional feature of our protocol is that it has constant rounds.

Along the way, we also present the first straight-line10 extractable commitment scheme
that only makes black-box use of semi-honest OTs. This primitive may be useful for other
applications, especially for black-box constructions of MPC protocols from minimal assump-
tions.

Having obtained bounded-concurrent security for OT, we proceed to construct bounded-
concurrent MPC protocols for all functionalities. This step is executed almost identically to
a similar step in [GKP18] and does not require any additional assumptions. It also maintains
the black-box and constant round properties of the original OT protocol. Consequently, we
obtain the first general-purpose bounded-concurrent secure MPC protocol that makes only
black-box use of cryptographic primitives; furthermore, the protocol has constant rounds
and relies only on standard polynomial hardness assumptions.

Theorem 1.5.1. Assume the existence of constant-round semi-honest oblivious transfer pro-
tocols and collision-resistant hash functions. Then, there exists a constant-round black-box
construction of general-purpose MPC that achieves bounded-concurrent security.

This result is essentially a black-box version of Pass’s result [Pas04b] (with slightly im-
proved assumptions). We will elaborate on this in Chapter 3.

Other Related Work. In addition to the work mentioned in the introduction, there are
several works that study security in the concurrent setting. For SPS-security, Pass, Lin,
and Venkitasubramaniam [PLV12] present a constant-round non-black-box construction of
MPC from constant-round semi-honest OT. Dachman-Soled et al. and Venkitasubramaniam
[DMRV13, Ven14] present a non-black-box construction that satisfies adaptive security. And
very recently, Badrinarayanan et al. [BGJ+17] present a non-black-box 3-round construction
assuming sub-exponential hardness assumptions. For angel-based security, Kiyoshima, Man-
abe, and Tatsuaki Okamoto [KMO14] present a constant-round black-box construction albeit
under a sub-exponential hardness assumption, and Hazay and Venkitasubramaniam [HV16a]
present a black-box construction that achieves adaptive security.

We have not discussed works that focus on other security notions, e.g., input-indistinguishable

10It means the extraction strategy does not involve rewinding techniques.
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computation and multiple ideal-query model [Pas04b, MPR06, GJ13].
Black-box constructions have been extensively explored for several other primitives such

as non-malleable or CCA-secure encryption, non-malleable commitments, zero-knowledge
proofs and so on (e.g., [CHH+07, PW08, CDMW08, GLOV12, GOSV14, OSV15]). For
concurrent OT, Garay and MacKenzie [GM00] presented a protocol for independent inputs
under the DDH assumption, and Garg et al. [GKOV12] proved the impossibility of this task
for general input distributions.

1.5.2 For Question 2

We answer Question 2 affirmatively by the following theorem, which closes the gap of round
complexity between black-box and non-black-box constructions of angel-based MPC under
minimal assumptions:

Theorem 1.5.2. Assume the existence of ROT-round semi-honest oblivious transfer proto-
cols. Then, there exists a max(Õ(log λ), O(ROT))-round black-box construction of a general
MPC protocol that satisfies angel-based UC security in the plain model.

Note that this yields a Õ(log λ)-round construction under the general assumption of enhanced
trapdoor permutations since they imply constant-round semi-honest OT.

We follow the framework of [CLP10] and its extension in [LP12, Kiy14]. The main
building block in [CLP10] is a special commitment scheme called a CCA-Secure Commit-
ment. Roughly speaking, a CCA-secure commitment is a tag-based commitment scheme that
maintains hiding even in the presence of a decommitment oracle O. More specifically, the ad-
versary receives one commitment from an honest committer and may simultaneously make
concurrently many commitments to O (similar to non-malleable commitments [DDN91]).
The oracle immediately extracts and sends back any value adversary commits successfully
provided that it used a tag that is different from the one used by the honest committer.
Lin and Pass [LP12] show that O(max(RCCA,ROT))-round black-box angel-based MPC can
be obtained from a RCCA-round CCA commitment and a ROT-round semi-honest OT pro-
tocol. Kiyoshima [Kiy14] demonstrated that Õ(k · log λ)-round CCA-secure commitments
can be obtained in a black-box manner from a k-round commitment scheme with slightly
weaker security called “one-one CCA” where the adversary can open only one session each
with the committer as well as the oracle; they further construct a O(log λ)-round one-one
CCA scheme from one-way functions in a black-box manner. We instead present a con-
stant round construction of one-one CCA, which implies Õ(log λ)-round (fully) CCA-secure
commitments using [Kiy14] (and Theorem 1.5.2 using [LP12]):

Theorem 1.5.3 (CCA Secure Commitments). Assume the existence of one-way functions.

Then, there exists a Õ(log λ)-round black-box construction of a CCA-secure commitment
scheme.

We will elaborate on the above results in Chapter 4.

Other Related Works. The focus of our work is constructions in the plain model. Hazay
and Venkitasubramaniam [HV16a] gave a black-box construction of an MPC protocol with-
out any setup assumptions that achieves composable security against an adaptive adversary.
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UC security can be achieved by moving to other trusted setup models such as the com-
mon reference string model [CLOS02, CF01, GO07], assuming an honest majority of parties
[CKL03], trusted hardware [MR04, GLM+04, Kat07, CCOV19], timing assumptions on the
network [KLP05], registered public-key model [BCNP04], setups that may be expressed as
a hybrid of two or more of these setups [GGJS11], and so on. Lin, Pass, and Venkitasubra-
maniam [LPV09, PLV12] show that a large number of these setup models could be treated
in a unified manner, and black-box analogues of these results were obtained by Kiyoshima,
Lin, and Venkitasubramaniam [KLV17].

1.5.3 For Question 3

Toward answering Question 3, We obtain a mix of both negative and positive results as
outlined below.

Negative Results via Black-Box Separation. In common applications of non-interactive
primitives such as OWFs and PRGs, the entire input is usually controlled by the evaluator
of these functions. We show that proof-based PRGs where the input (i.e., the seed) is entirely
chosen by the evaluator cannot be constructed in a black-box manner from an (ordinary)
OWF chosen from the class of all OWFs. Since PRGs can be constructed in a fully-black-
box manner from OWFs [GL89, ILL89, HILL99a], this separates proof-based PRGs from
ordinary PRGs.

More specifically, black-box construction of a proof-based PRG from (ordinary) OWFs
consists of a deterministic and efficient oracle algorithm G(·), along with an efficient protocol,
Π

(·)
G = 〈P (·), V (·)〉, of two interactive oracle machines.11 For every OWF f , algorithm Gf

should be a PRG, and protocol Πf = 〈P f , V f〉 should be a ZKP system for the relation
Rf
G = {(y, x) | s.t. y = Gf (x)}. Then, we show that a fully-black-box reduction [IR89, RTV04]

from proof-based PRGs to ordinary OWFs does not exist if the prover chooses the entire
seed.

The range-membership relation Rf = {(y, x) | y = f(x)} ruled out in [Ros12] is a special
case of the aforementioned relation Rf

G = {(y, x) | s.t. y = Gf (x)}. In our terminology,

Rosulek rules out a special type of proof-based OWF (F (·),Π
(·)
F ) where F is just a “delegate”

for the oracle OWF; i.e., it returns the oracle’s response when queried on the given input.
This is captured in [Ros12] by formally defining the notion of functionally-black-box (FBB)
protocols. In contrast, the relation we consider can make polynomially many queries to the
oracle on arbitrary inputs and compute over the responses to produce the output. We extend
the notion of FBB protocols to formally capture these extensions.

Partly due to these differences and our overall goals, our negative result is incomparable
to Rosulek’s. While Rosulek rules out black-box proofs for the range membership for OWFs
assuming injective OWFs, ours is only a black-box separation, albeit without any additional
assumptions. A black-box separation is the best one can hope for in our setting since non-
black-box constructions of proof-based OWFs that use the code of the oracle trivially exist.

Positive Results. We next investigate whether mild restrictions on the inputs can help by-

11Note that the protocol is allowed to depend on G(·) but not on the oracle which may be arbitrarily
chosen later. The same holds for the relation Rf

G introduced next.
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pass the black-box separation result. One option is to consider modifications along the lines
of the Goldreich-Levin (GL) hardcore predicate [GL89], where one considers a OWF F con-
structed from any given OWF f on inputs of the form (x, r). This makes it possible to show
that predicate hc(x, r) := ⊕i(xi · ri) is hardcore for the modified function F (x, r) := r‖f(x)
even though a hardcore predicate for arbitrary OWFs is still unknown. These changes to
the function and the input do not seem to affect the applicability of their result significantly.

We adopt a similar approach to construct proof-based primitives. Continuing with OWFs
as an example, we seek to construct a proof-based OWF F (·) which can be instantiated with
only black-box access to any OWF f and takes inputs of the form (x, r). As in the GL
setting, x will act as the “main input” chosen by the evaluator/prover, and r will be publicly
accessible from the output of F f (x, r). However, in a crucial difference, r will be chosen by
the verifier during the execution of ZKP Πf

F . There are no other restrictions on any of the
objects. Some remarks are in order.

1. In light of our black-box separation result, it is essential to let the verifier choose r since
no other restrictions are present. This means that the computation of y = F f (x, r) must
be performed during the proof. We formalize this by modeling Πf

F as a secure two-party
computation protocol for evaluating the functionality that on inputs x and r from relevant
parties, returns y. The ZK property is captured by requiring simulation-based security
against malicious receivers; for soundness, we only require that the honest verifier, with
high probability, does not output a y∗ that is not in the range. This is effectively a
black-box ZKP for the relation Rf

F (r) = {(y, x) | s.t. y = F f (x, r)}.12

2. The verifier must choose r from an unpredictable distribution such as the uniform distri-
bution over sufficiently long strings, since otherwise, the soundness would be impossible
as a cheating prover can simply guess r, bringing us back to the setting of the separation
result.

3. Since the verifier may maliciously choose r to violate the one-way property of F f , we
require that for every string r, the function defined by F f (·, r) is one-way as long as f is
one-way.

We follow the same approach for formally defining proof-based versions of PRGs and CRHFs.
Having settled on a satisfactory definition, we present black-box constructions of the proof-
based versions of OWFs (for range membership), as well as PRGs and CRHFs, directly from
their ordinary counterparts.

Theorem 1.5.4 (Informal). There is a fully-black-box construction of proof-based primitive
as described above for the range-membership relation with two-party inputs of the form (x, r),
assuming that primitive exists, where primitive ∈ {OWF,PRG,CRHF}.

At first glance, one may wonder whether black-box commit-and-prove protocols already
yield proof-based OWFs. That is, the commit stage of such protocols can be viewed as a
one-way function over the input (x, r) where x is the value to be committed and r is the
randomness, the output y is the transcript of the commit-phase, and the proof-phase plays the

12For now, we only focus on range-membership proofs. The definitional approach is consistent with the
commit-and-prove literature, although there are important differences since we are dealing with deterministic
primitives.
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role of associated ZKP. This approach does not work since the commit-and-prove protocols
merely bind the prover to a well-defined value x. They do not guarantee that w.h.p. every
accepting transcript has a valid “preimage” (x, r) that maps to it. In contrast, the soundness
of range-membership proofs of proof-based OWFs requires that w.h.p. a preimage must exist
for the output accepted by the honest verifier. At a technical level, the black-box commit-
and-prove protocols are based on cut-and-choose techniques that can only guarantee that
the accepted value is close to an honestly generated value, which is insufficient to guarantee
a preimage.

Supporting Predicates. We show that it is possible to construct a slightly more general
proof-system than merely range membership for each of our proof-based primitives. Con-
tinuing with the OWF example, we can construct a black-box proof-based OWF F f such
that for any predicate φ, the verifier learns a value y with the guarantee that there exists an
input (x, r) such that: (1) y = F f (x, r) where r is chosen uniformly by the honest receiver,
(2) x = α‖x′, and (3) φ(α) = 1. That is, we can support any predicate (in fact, computation
of any function) over a prefix of the preimage of the output. The ZKP system here depends
on the code of φ but not that of f as before.

This extension is motivated by similar results for commit-and-prove, which are quite
useful in constructing larger black-box protocols [GLOV12, KOS18]. We achieve this by
presenting a new construction that combines our ideas for range-membership with the “MPC-
in-the-head” technique [IKOS07].

We will elaborate on the above results in Chapter 5.

Citations to Published Work. The results presented herein are extended from the fol-
lowing conference papers:

[1] Black-Box Constructions of Bounded-Concurrent Secure Computation
Sanjam Garg, Xiao Liang, Omkant Pandey, and Ivan Visconti
The 12th International Conference on Security and Cryptography for Networks (SCN
2020)

[2] Improved Black-Box Constructions of Composable Secure Computation
Rohit Chatterjee, Xiao Liang, and Omkant Pandey
The 47th International Colloquium on Automata, Languages, and Programming (ICALP
2020)

[3] Towards a Unified Approach to Black-Box Constructions of Zero-Knowledge
Proofs
Xiao Liang and Omkant Pandey
The 41st International Cryptology Conference (Crypto 2021)
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Chapter 2

Definitions and Preliminaries

2.1 Basic Notation

We assume the familiarity with standard concepts of complexity theory such as Turing
machines, arithmetic/Boolean circuits, standard complexity classes (e.g. NP) and so on.
These materials can be found in standard complexity or cryptography textbooks (e.g. [Gol01,
Gol08, AB09]).

Following the convention in cryptography, we call an algorithm efficient if it can be
implemented by a probabilistic Turing machine which runs in polynomial time. We refer to
such algorithms as PPT (standing for “probabilistic polynomial time”) algorithms/machines.

Let N be the set of natural numbers, Z the set of integers, and R the set of real numbers.
The security parameter is denoted by λ ∈ N. For any k ∈ N, [k] denotes the set {1, 2, . . . , k}.
For a distribution D we use x← D to mean x is sampled according to D. Unless emphasized
otherwise, we assume uniform distribution by default, in which case we usually use the

notation
$←−. We use y ∈ D to mean y is in the support of D. For a set S we overload the

notation to use x
$←− S to indicate that x is chosen uniformly at random from S.

Let p be a predicate and D1, D2, · · · probability distributions, then the notation

Pr
[
x1 ← D1;x2 ← D2; · · · : p(x1, x2, · · · )

]
denotes the probability that p(x1, x2, · · · ) holds after the ordered execution of the probabilis-
tic assignments x1 ← D1;x2 ← D2; · · · . The notation

{x1 ← D1;x2 ← D2; · · · : p(x1, x2, · · · )}

denotes the new probability distribution over {(x1, x2, · · · )}.
Definition 2.1.1 (Probability Ensembles). Let I be a countable index set. An ensemble
indexed by I is a sequence of random variables indexed by I. Namely, any X = {Xi}i∈I ,
where each Xi is a random variable, is an ensemble index by I.

Definition 2.1.2 (Negligibility). A function negl : N→ R is negligible if for every constant
c > 0 there exist an N such that for all n > N , negl(n) < 1

nc
.
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Definition 2.1.3 (Computational Indistinguishability). Two ensembles X = {Xi}i∈I and
Y = {Yi}i∈I are said to be computationally indistinguishable if for every probabilistic poly-
nomial time (PPT) algorithm D, there exists a negligible function negl(·) so that for every
i ∈ I,

|Pr[D(Xi, 1
i) = 1]− Pr[D(Yi, 1

i) = 1]| < negl(i)

Computational indistinguishability says that two ensembles looks the same in the eye
of an efficient (PPT) distinguisher. But sometimes (see our discussion for commitment
schemes in Definition 2.2.1), we require even stronger notion of indistinguishability such
that even a unbounded-power distinguisher can not tell the difference (except for negligible
probability). That means the distribution of two random variables from are close enough.
This information-theoretical flavored closeness is called statistical indistinguishability.

Definition 2.1.4 (Statistical indistinguishability). Two ensembles X = {Xi}i∈I and Y =
{Yi}i∈I are statistically indistinguishable (statistically close) if their statistical difference is
negligible, where the statistical difference (also known as variation distance) between X and
Y is defined as the function

∆(n) =
1

2
·
∑
α

∣∣Pr[Xn = α]− Pr[Yn = α]
∣∣.

Statistical indistinguishability says that the Xn ∈ {Xi}i∈I and Yn ∈ {Yi}i∈I have negligi-
ble statistical distance when n is large enough. In another words, even a computationally-
unbounded distinguisher cannot tell the difference except with negligible probability. An even
stronger notion, called perfect indistinguishable, requires that Xn and Yn are identically dis-
tributed. That means a computationally-unbounded distinguisher cannot tell the difference
at all. since they are identical now.

We will use the following notation for these 3 kinds of indistinguishability: if two ensem-
bles {Xi}i∈I and {Yi}i∈I are:

– computationally-indistinguishable, we write: {Xi}i∈I
c
≈ {Yi}i∈I

– statistically-close, we write: {Xi}i∈I
s
≈ {Yi}i∈I

– identically-distributed, we write: {Xi}i∈I
i.d.
== {Yi}i∈I

Remark 2.1.1 (A Note on Indistinguishability). The definition for indistinguishability given
in Definition 2.1.3 is the standard one. This definition extends analogously to non-uniform
adversaries characterized as circuits. These definitions works for poly-time hardness assump-
tion very well.

In [Pas04a], Pass defined the notion of “strong-indistinguishability” to handle super-
polynomial hardness assumptions. Intuitively, two ensembles are strong T (n)-indistinguishable
if every T (n)-time probabilistic TM’s advantage is upper-bounded by 1

T (n)
. We want to remark

that even though this definition is called “strong”, it is only stronger than the standard one in
the super-polynomial setting (i.e. T (n) is super-polynomial). When T (n) is polynomial, this
definition is actually weaker than the standard definition of computational indistinguishabil-
ity (Definition 2.1.3). To see this, consider an adversary whose advantage is smaller than

1
T (n)

but lager than 1
T 2(n)

. It satisfies the strong T (n)-indistinguishable definition, but does
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not satisfy the Definition 2.1.3.
In a version of [Bar01]1, Barak used a similar definition for indistinguishability.

2.2 Commitment Schemes

Next we give the definition of commitment schemes with respect to a single bit. This
definition can be easily extended to general commitment schemes, enabling the committer
to commit to a string rather than just one bit. In many cases, given a construction of a
bit-commitment scheme, it is straightforward to generalize it to a multi-bit commitment
scheme.

Definition 2.2.1 (Bit Commitment Scheme). A bit commitment scheme Com = (S,R) is an
efficient two-party protocol consisting of the following two stages. Throughout, both parties
receive the security parameter 1λ as input.

– Commit: The sender (committer) S has a private input b ∈ {0, 1}, and a sequence of coin
tosses r. At the end of this stage, both parties receive as common output a commitment
c = Com(b; r).

– Decommit: Both parties receive as input a commitment c = Com(b; r). S also receives
the private input b and coin tosses r for c. This stage is non-interactive: S sends a single
message to R, and R either outputs a bit and accepts or rejects.

The following properties should be satisfied:

– Completeness: If both parties are honest, then for any input bit b ∈ {0, 1} that S gets,
R outputs b and accepts at the end of the decommit stage.

– (Statistically) Hiding: For every unbounded deterministic strategy R∗, the distributions
of the view of R∗ in the commit stage while interacting with an honest S are statistically
close for b = 0 and b = 1.

– (Computationally) Binding: For every nonuniform PPT S∗, S∗ succeeds in the fol-
lowing game (breaks the commitment) with negligible probability:

1. S∗ interacts with an honest R and outputs a commitment c′.

2. S∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1, R on input (c′, τb)
accepts and outputs b.

We have different types of hiding/binding properties as follows:

– For hiding property: If the distributions of the view of R∗ are identically distributed
for b = 0 and b = 1, it is called perfectly-hiding; If the hiding property is only against
a PPT receiver (except for negligible probability), it is called computationally hiding.

– For binding property: If a computationally-unbounded S∗ can succeeds with at most
negligible probability, it is called statistically binding; If a computationally-unbounded
S∗ cannot succeeds at all, it is called perfectly binding.

1This version can be found at https://www.boazbarak.org/Papers/nonbb.pdf.
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We remark that a commitment scheme cannot be statistically-hiding and statistically
binding at the same time. To show the logic behind it, we now argue that it is impossible
for a commitment scheme Com to be both perfectly hiding and binding. A similar yet more
involved argument can be established in the statistical version. On the one hand, Com is
perfectly hiding, which means any value c = Com(x), can be decommit to both 1 or 0. That
is because the receiver is computationally unbounded in the “perfectly-hiding” setting. It
can always reverse Com (or brute force the domain of Com(·)) to see the “pre-image” x for c.
If there exist only a unique x which commits to c, the unbounded receiver breaks the hiding
property since it learns that the unique x must be the message committed by the committer.
On the other hand, Com is perfectly-binding, which means there is a distinct decommitment
to any value c = Com(x). This contradicts the previous discussion about perfectly-hiding
property.

Feasibility Results. First, note that any commitment scheme in the two-player model
implies the existence of one-ways. Statistically-binding commitment schemes are known
from one-way functions [Nao90]. Statistically-hiding commitment schemes are also known
from one-way functions [HR07]. Perfectly-hiding commitment schemes are known from one-
way permutations [NOVY98].

Remark 2.2.1. Naor and Yung [NY89] proposed a statistically-hiding commitment from
CRHFs, which was later extended to a multi-bit commitments in [DPP98]. Since CRHF im-
plies one-way functions, their result is theoretically weaker than the construction in [HR07].
But the construction is more efficient and practical.

2.3 Extractable Commitments

A commitment scheme is extractable if there exist an efficient extractor such that, as long
as the committer behaves honestly, the committed value can be extracted. Constructions
for such commitment already existed implicitly in the implementation of concurrent zero-
knowledge protocols in [PRS02, Ros04]. This concept and construction was made explicit in
[MOSV06], which also inherited the concurrent extractability from [PRS02]. The standalone
version was later formalized and used in other works [PW09, GGJS12, GKP17]. It suffices
our purpose once the extractability property holds in a standalone setting. We now present
the definition (in Definition 2.3.1) and construction (in Protocol 2.3.1) used in [PW09].

Definition 2.3.1 (Extractable Commitment). A commitment scheme ExtCom = (S,R)
is extractable if there exists an expected polynomial-time probabilistic oracle machine (the
extractor) E that given oracle access to any PPT cheating sender S∗ outputs a pair (τ, σ∗)
such that:

– Simulation: τ is identically distributed to the view of S∗ at the end of interacting with
an honest receiver R in commitment phase.

– Extraction: the probability that τ is accepting and σ∗ = ⊥ is negligible.

– Binding: if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than
σ∗.
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Protocol 2.3.1: Extractable Commitment Scheme

The extractable commitment scheme, based on any commitment scheme Com, works in
the following way.

Input:

– Both S and R get security parameter 1λ as the common input.

– S gets a string σ as his private input.

Commitmment Phase:

– The sender (committer) S commits using Com to λ pairs of strings {(v0
i , v

1
i )}λi=1 where

(v0
i , v

1
i ) = (ηi, σ ⊕ ηi) and ηi are random strings in {0, 1}`(λ) for 1 ≤ i ≤ λ.a

– Upon receiving a challenge ~c = (c1, . . . , cλ) from the receiver R, S opens the commit-
ments to (vc11 , . . . , v

cλ
λ ).

– R checks that the openings are valid.

Decommitment Phase:

– S sends σ and opens the commitments to all λ pairs of strings.

– R checks that all the openings are valid, and also that σ = v0
1 ⊕ v1

1 = · · · = v0
λ ⊕ v1

λ.

aActually, the scheme will be secure as long as we use Com to commit k = ω(log λ) pairs of strings.

2.4 Zero-Knowledge Proofs and Arguments (of Knowl-

edge)

For an NP language L, let Lλ = L ∩ {0, 1}λ. For any x ∈ Lλ, R(x) denote the set of its
witness (in terms of the NP relation for L).

For a probabilistic Turing machine A, we use A(x, y; r) to denote the output of A on
input x and auxiliary tape y, when the random tape is fixed to r. We may drop r from the
argument list when it is not necessary to be explicit about the random tape. When it is
clear from the context, we (ab)use A(x, y; r) to represent the machine A specified with the
corresponding (auxiliary) input and random tape.

For a pair of (potentially probabilistic) interactive machines A and B, 〈A(y), B(z)〉(1λ, x)
denotes the random variable representing the output of B when interacting with A on com-
mon input x and the security parameter 1λ, when the random input to each machine is
uniformly and independently chosen, and A (resp. B) has private input y (resp. z). The
private input y (resp. z) will be dropped for A (resp. B) in the above notation when it is an
empty string. When we want to be specific about the underlying protocol Π which A and B
implements, we will write 〈A(y), B(z)〉(1λ, x). When it is clear from the context, we (ab)use
〈A(y), B(z)〉(1λ, x) to represent the execution of A and B specified with the corresponding
common and private input.

Definition 2.4.1 (Interactive Proofs (IP) and Arguments). A pair of PPT interactive Tur-
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ing machines 〈P, V 〉 is called an interactive argument for a language L ∈ NP if the following
conditions hold:

– Completeness. For every λ ∈ N, every x ∈ Lλ and every w ∈ R(x),

Pr[〈P (w), V 〉(1λ, x) = 1] = 1,

where the probability is taken over the random coins of P and V .

– Computational Soundness. For every PPT machine P ∗ and every y ∈ {0, 1}∗, there
exists a negligible function negl(·) such that for every x /∈ Lλ with |x| ≥ n,

Pr[〈P ∗(y), V 〉(1λ, x) = 1] ≤ negl(λ)

where the probability is taken over the random coins of P ∗ and V .

An interactive argument is an interactive proof if the soundness property holds against all
(potentially unbounded) P ∗’s.

Definition 2.4.2 (Zero-Knowledge Proofs and Arguments). An interactive proof (resp. ar-
gument) system 〈P, V 〉 for L ∈ NP is a zero-knowledge argument (resp. argument) for the
same L if it additionally satisfies the following zero-knowledge property.

– Zero-Knowledge. There exists an expected PPT machine Sim such that for every PPT
machine V ∗, every x ∈ Lλ and every z ∈ {0, 1}∗,

{Sim(1λ, x, z)}λ∈N
c
≈ {ViewV ∗(1

λ, x, z)}λ∈N,

where ViewV ∗(1
λ, x, z) denotes the view of V ∗ from the interaction 〈P (w), V ∗(z)〉(1λ, x)

for an arbitrary w ∈ R(x).

Definition 2.4.3 (Interactive Arguments of Knowledge). An interactive argument system
〈P, V 〉 for L ∈ NP is an interactive argument of knowledge for the same L if it additionally
satisfies the following argument of knowledge (AoK) property.

– AoK Property (with knowledge error κ(·)). There exists a positive polynomial q(·)
and a probabilistic oracle machine K such that for every PPT machine P ∗, every λ ∈ N
and every x ∈ Lλ, machine K satisfies the following condition:

∗ Let p(x, y, r) := Pr[〈P ∗(y; r), V 〉(1λ, x) = 1]. If p(x, y, r) > κ(λ), then on input 1λ and
x, and with oracle access to P ∗(1λ, x, y; r), machine K runs in expected polynomial time
and output a w ∈ R(x) with probability at least:

p(x, y, r)− κ(λ)

q(λ)

If κ(·) is negligible, then we say the argument has negligible knowledge error.

An interactive argument of knowledge is an interactive proof of knowledge if the above AoK
property holds against all (potentially unbounded) P ∗’s.
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Definition 2.4.4 (Zero-Knowledge Proofs (Arguments) of Knowledge). An zero-knowledge
proof (resp. argument) of knowledge for a language L ∈ NP is an interactive proof (resp.
argument) of knowledge for L that additionally achieves the zero-knowledge property in Def-
inition 2.4.2.

2.5 (Computationally) Secure Multi-Party Computa-

tion

The formal definition for secure multi-party computations can be found in standard cryptog-
raphy textbooks (e.g., [Gol09, HL10, Lin16]). For completeness, we include a brief description
of the model here. The description is taken from [AL11] with a few syntactic changes.

Consider malicious adversaries that can follow an arbitrary strategy in order to carry out
their attack. Security is formalized by comparing a real protocol execution to an ideal model
where the parties just send their inputs to the trusted party and receive back outputs.

Remark 2.5.1. In this work, we only focus on the static corruption model. In this model,
the adversary is given a fixed set of parties whom it controls. Honest parties remain honest
throughout and corrupted parties remain corrupted.

Execution in the Real Model. In the real model, there are n parties (P1, . . . , Pn), modeled
as PPT interactive Turing machines, running the protocol Π. We consider a synchronous
network with private point-to-point channels, and an authenticated broadcast channel. This
means that the computation proceeds in rounds, and in each round parties can send private
messages to other parties and can broadcast a message to all other parties. We stress that
the adversary cannot read or modify messages sent over the point-to-point channels, and
that the broadcast channel is authenticated, meaning that all parties know who sent the
message and the adversary cannot tamper with it in any way. Nevertheless, the adversary
is assumed to be rushing, meaning that in every given round it can see the messages sent by
the honest parties before it determines the messages sent by the corrupted parties.

Let A be an arbitrary machine2 with auxiliary input z, and let I ⊆ [n] be the set
of corrupted parties controlled by A. We denote by REALΠ,A(z),I(~x) the random variable
consisting of the view of the adversary A and the outputs of the honest parties, following a
real execution of Π in the aforementioned real model, where for every i ∈ [n], party Pi has
input xi, i.e. the i-th element of ~x.

Execution in the Ideal Model. In the ideal model for a functionality f , the parties send
their inputs to an incorruptible trusted party who computes the output for them. We denote
the ideal adversary by Sim, and the set of corrupted parties by I. An execution in the ideal
model works as follows:

– Input stage: The adversary Sim for the ideal model receives auxiliary input z and sees
the inputs xi of the corrupted parties Pi (for all i ∈ I). Sim can substitute any xi with
any x′iof its choice under the condition that |x′i| = |xi|.
2A may not be efficient. The choice of A’s running time depends on the security one wants to achieve.
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– Computation: Each party sends its (possibly modified) input to the trusted party; de-
note the inputs sent by x′1, . . . , x

′
n. The trusted party computes (y1, . . . , yn) = f(x1, . . . , x

′
n)

and sends yj to Pj for every j ∈ [n].

– Outputs: Each honest party Pj (for j /∈ I) outputs yj, the corrupted parties output ⊥,
and the adversary Sim outputs an arbitrary function of its view.

We denote by IDEALf,Sim(z),I(~x) the outputs of the ideal adversary Sim controlling the cor-
rupted parties in I and of the honest parties after an ideal execution with a trusted party
computing f , upon inputs x1, . . . , xn for the parties and auxiliary input z for Sim. We stress
that the communication between the trusted party and P1, . . . , Pn is over an ideal private
channel.

Definition of security. Informally, we say that a protocol is secure if its real-world behavior
can be emulated in the ideal model. That is, we require that for every real-model adversary
A there exists an ideal-model adversary Sim such that the result of a real execution of the
protocol with A has the same distribution as the result of an ideal execution with Sim.
(We remark that the “distribution” here refers to the joint distribution of the outputs of all
parties, not only the corrupted ones.) This means that the adversarial capabilities of A in a
real protocol execution are just what Sim can do in the ideal model.

In the definition of security, we require that the ideal-model adversary Sim run in time
that is polynomial in the running time of A, whatever the latter may be. As argued in
[Can00a, Gol09] this definitional choice is important since it guarantees that information-
theoretic security implies computational security. In such a case, we say that Sim is of
comparable complexity to A. In the following, we define computationally secure MPC,
where both A and Sim are PPT machines. Looking ahead, we will deal with the information-
theoretical setting in Section 2.7, where A and Sim could be unbounded machines.

Definition 2.5.1 (Computationally-Secure MPC). Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an
n-ary functionality, and let Π be a protocol. We say that Π is t-secure for f if for every
PPT adversary A in the real model, there exists a probabilistic adversary Sim of comparable
complexity in the ideal model, such that for every I ⊆ [n] of cardinality at most t, every
~x ∈ ({0, 1})n where |x1| = . . . = |xn|, and every z ∈ {0, 1}∗, it holds that:

{IDEALf,Sim(z),I(~x)}
c
≈ {REALΠ,A(z),I(~x)}.

2.6 Verifiable Secret Sharing Schemes

A verifiable secret sharing (VSS) [CGMA85] scheme is a two-stage secret sharing protocol
for implementing the following functionality. In the first stage, denoted by VSSShare, a special
player referred to as dealer, shares a secret s among n players, in the presence of at most t
corrupted players. In the second stage, denoted by VSSRecon, players exchange their views of
the Share stage, and reconstruct the values. The functionality ensures that when the dealer
is honest, before the second stage begins, the t corrupted players have no information about
the secret. Moreover, when the dealer is dishonest, at the end of the Share stage the honest
players would have realized it through an accusation mechanism that disqualifies the dealer.
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The formal definition is presented in Definition 2.6.1. [BGW88, CDD+99] implemented
(n+1, bn/3c)-perfectly secure VSS schemes, and (n+1, bn/4c)-perfectly secure VSS schemes
can be found in [GIKR01]. These constructions suffice for all the applications in the current
thesis.

Definition 2.6.1 (Verifiable Secret Sharing). An (n+1, t)-perfectly secure VSS scheme ΠVSS

consists of a pair of protocols (VSSShare,VSSRecon) that implement respectively the sharing and
reconstruction phases as follows.

– Sharing Phase VSSShare: Player Pn+1 (referred to as dealer) runs on input a secret s
and randomness rn+1, while any other player Pi (i ∈ [n]) runs on input a randomness
ri. During this phase players can send (both private and broadcast) messages in multiple
rounds.

– Reconstruction Phase VSSRecon: Each shareholder sends its view vi (i ∈ [n]) of the
sharing phase to each other player, and on input the views of all players (that can include
bad or empty views) each player outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally unbounded
adversary can corrupt up to t players that can deviate from the above procedures. The fol-
lowing security properties hold.

– Commitment: if the dealer is dishonest, then one of the following two cases happen:
1) during the sharing phase honest players disqualify the dealer, therefore they output a
special value ⊥ and will refuse to play the reconstruction phase; 2) during the sharing
phase honest players do not disqualify the dealer, therefore such a phase determines a
unique value s∗ that belongs to the set of possible legal values that does not include ⊥,
which will be reconstructed by the honest players during the reconstruction phase.

– Secrecy: if the dealer is honest, then the adversary obtains no information about the
shared secret before running the protocol Recon.

– Correctness: if the dealer is honest throughout the protocols, then each honest player
will output the shared secret s at the end of protocol Recon.

2.7 Information-Theoretic MPC and the MPC-in-the-

Head Paradigm

We first recall information-theoretically secure MPCs and relevant notion that will be em-
ployed in the MPC-in-the-head paradigm shown later.

Information-Theoretic MPC. We now define MPC in the information-theoretical setting.
Both the ideal and real executions are identical to the ones described in Section 2.5, except
that the machines A and Sim are computationally unbounded now.

Definition 2.7.1 (Perfectly/Statistically-Secure MPC). Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be
an n-ary functionality, and let Π be a protocol. We say that Π (n, t)-perfectly (resp., statisti-
cally) securely computes f if for every static, malicious, and (possibly-inefficient) probabilis-
tic adversary A in the real model, there exists a probabilistic adversary Sim of comparable
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complexity (i.e., with runtime polynomial in that of A) in the ideal model, such that for every
I ⊂ [n] of cardinality at most t, every ~x = (x1, . . . , xn) ∈ ({0, 1}∗)n (where |x1| = · · · = |xn|),
and every z ∈ {0, 1}∗, it holds that:

{REALΠ,A(z),I(~x)} i.d.
== {IDEALf,Sim(z),I(~x)}

(
resp., {REALΠ,A(z),I(~x)}

s
≈ {IDEALf,Sim(z),I(~x)}

)
.

Recall that the MPC protocol from [BGW88] achieves (n, t)-perfect security (against
static and malicious adversaries) with t being a constant fraction of n.

Theorem 2.7.1 ([BGW88]). Consider a synchronous network with pairwise private chan-
nels. Then, for every n-ary functionality f , there exists a protocol that (n, t)-perfectly securely
computes f in the presence of a static malicious adversary for any t < n/3.

Consistency, Privacy, and Robustness. We now define some notation related to MPC
protocols. Their roles will become clear when we discuss the MPC-in-the-head technique
later.

Definition 2.7.2 (View Consistency). A view Viewi of an honest player Pi during an MPC
computation Π contains input and randomness used in the computation, and all messages
received from and sent to the communication tapes. A pair of views (Viewi,Viewj) is said to
be consistent with each other if

1. Both corresponding players Pi and Pj individually computed each outgoing message hon-
estly by using the random tapes, inputs and incoming messages specified in Viewi and
Viewj respectively, and:

2. All output messages of Pi to Pj appearing in Viewi are consistent with incoming messages
of Pj received from Pi appearing in Viewj (and vice versa).

We further define the notions of correctness, privacy and robustness for multiparty pro-
tocols.

Definition 2.7.3 (Semi-Honest Computational Privacy). Let 1 ≤ t < n, let Π be an MPC
protocol, and let A be any static, PPT, and semi-honest adversary. We say that Π realizes a
function f : ({0, 1}∗)n 7→ ({0, 1}∗)n with semi-honest (n, t)-computational privacy if there is
a PPT simulator Sim such that for any inputs x,w1, . . . , wn, every subset T ⊂ [n] (|T | ≤ t)
of players corrupted by A, and every D with circuit size at most poly(λ), it holds that∣∣Pr[D(ViewT (x,w1, . . . , wn)) = 1]−Pr[D(Sim(T, x, {wi}i∈T , fT (x,w1, . . . , wn))) = 1]

∣∣ ≤ negl(λ), (2.1)

where ViewT (x,w1, . . . , wn) is the joint view of all players.

Definition 2.7.4 (Statistical/Perfect Correctness). Let Π be an MPC protocol. We say that
Π realizes a deterministic n-party functionality f(x,w1, . . . , wn) with perfect (resp., statisti-
cal) correctness if for all inputs x,w1, . . . , wn, the probability that the output of some party
is different from the output of some party is different from the actual output of f is 0 (resp.,
negligible in k), where the probability is over the independent choices of the random inputs
r1, . . . , rn of these parties.

Definition 2.7.5 (Perfect/Statistical Robustness). Assume the same setting as the previ-
ous definition. We say that Π realizes f with (n, t)-perfect (resp., statistical) robustness
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if in addition to being perfectly (resp., statistical) correct in the presence of a semi-honest
adversary as above, it enjoys the following robustness property against any computationally
unbounded malicious adversary corrupting a set T of at most t parties, and for any inputs
(x,w1, . . . , wn): if there is no (w′1, . . . , w

′
n) such that f(x,w′1, . . . , w

′
n) = 1, then the probabil-

ity that some uncorrupted player outputs 1 in an execution of Π in which the inputs of the
honest parties are consistent with (x,w1, . . . , wn) is 0 (resp., negligible in λ).

MPC-in-the-Head. MPC-in-the-head is a technique developed for constructing black-box
ZK protocols from MPC protocols [IKOS07]. Very roughly, the MPC-in-the-head idea is
the following. Let Fzk be the zero-knowledge functionality for an NP language. Fzk takes
as public input x and one share from each party, and outputs 1 iff the secret reconstructed
from the shares is a valid witness. To build a ZK protocol, the prover runs in his head
an execution of MPC w.r.t. Fzk among n imaginary parties, each one participating in the
protocol with a share of the witness. Then, it commits to the view of each party separately.
The verifier obtains t randomly chosen views, checks that such views are “consistent” (see
Definition 2.7.2), and accepts if the output of every party is 1. The idea is that, by selecting
the t views at random, V will catch inconsistent views if the prover cheats.

We emphasize that, in this paradigm, a malicious prover decides the randomness of
each virtual party, including those not checked by the verifier (corresponding to honest
parties in the MPC execution). Therefore, MPC protocols with standard computational
security may not protect against such attacks. We need to ensure that the adversary cannot
force a wrong output even if it additionally controls the honest parties’ random tape. The
(n, bn/3c)-perfectly secure MPC protocol in Theorem 2.7.1 suffices for this purpose (see also
Remark 2.7.1).

One can extend this technique further (as in [GLOV12]), to prove a general predicate φ
about an arbitrary value α. Namely, one can consider the functionality Fφ in which party
i participates with input a VSS share [α]i. Fφ collects all such shares, and outputs 1 iff
φ(VSSRecon([α]1, . . . , [α]n)) = 1.

Remark 2.7.1 (Exact Security Requirements on the Underlying MPC.). To be more ac-
curate, any MPC protocol that achieves semi-honest (n, t)-computational privacy (see Def-
inition 2.7.3) and (n, t)-perfect robustness (see Definition 2.7.5) will suffice for the MPC-
in-the-head application.3 These two requirements are satisfied by any (n, t)-perfectly secure
MPC (and, in particular, the one from Theorem 2.7.1).

3It is also worth noting that the (n, t)-perfect robustness could be replaced with adaptive (n, t)-statistical
robustness. See [IKOS07, Section 4.2] for more details.
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Chapter 3

Black-Box Bounded-Concurrent MPC
in Constant Rounds

3.1 Overview of Our Techniques

Before describing our approach, we first make some observations. We start by noting that
in the context of concurrent secure computation, it is not possible to use rewinding-based
simulation techniques since the simulator will have to provide additional outputs during
rewinding but the ideal functionality does not deliver more than one output. This is in
sharp contrast to concurrent zero-knowledge where the output is simply “yes” since the
statement is in the language. While this can be salvaged for certain functionalities as shown
by Goyal [Goy12], it is essential to move to straight-line simulators for general functionalities.
In particular, in the bounded-concurrent setting we must move to non-black-box simulation
techniques [Bar02].

Let us also note that in some situations, particularly in the setting of resettable zero-
knowledge, a long line of work shows that it is possible to perform non-black-box simulation
under one-way functions [BP12, BP13, CPS13]. Furthermore, a black-box version of these
simulation techniques under one-way functions was obtained by Ostrovsky, Scafuro, and
Venkitasubramaniam [OSV15]. It therefore seems possible to construct bounded-concurrent
MPC under the minimal assumption of semi-honest OT in a black-box manner.1 Unfor-
tunately, this approach is flawed since all known non-black-box simulation techniques are
based on rewinding and therefore cannot be applied to the concurrent MPC setting. It is
also not at all clear if “straight-line” simulatable zero-knowledge based only on one-way func-
tions can be constructed from known approaches. Therefore, we stress that even without the
requirement of black-box usage of primitives, constructing bounded-concurrent MPC under
semi-honest OT only remains as a fascinating open problem.

We therefore attempt to obtain a construction that exploits collision-resistant hash func-
tions, in addition to the minimal assumption of semi-honest OTs. Toward this goal, we build
upon techniques developed in the following two works:

1. Garg, Kiyoshima, and Pandey [GKP18] construct a constant-round black-box MPC pro-

1In some works, when the construction is black-box but the proof of security uses non-black-box techniques
(as in this paper), this is referred to as a semi-black-box protocol.
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tocol with SPS-security under polynomial hardness assumptions. The simulator works by
extracting crucial information from adversary’s messages via brute-force. The simulator is
straight-line and such extraction steps are the only non-polynomial work in its execution.

2. Goyal et al. [GOSV14] present a black-box implementation of the non-black-box simula-
tion techniques that rely on adversary’s code [Bar01]. Such techniques often (and certainly
those of [Bar01, GOSV14]) extend to situations where the adversary may receive arbitrary
but a-priori bounded amount of external communication.

At a high level, our main idea is to use the simulation technique of [GOSV14] to replace
the brute-force extraction steps in [GKP18] with polynomial-time extraction using adver-
sary’s code. The corresponding commitment scheme will be interactive. Since this simulator
is polynomial time, we can hope to get bounded-concurrent MPC (in contrast to SPS MPC).
Implementing this idea turns out to be rather involved. The fact that the commitment pro-
tocol is interactive brings its own issues of non-malleability and also interferes with some key
proof steps in [GKP18] which rely on rewinding. It is also not enough that the underlying
commitment protocol be extractable in a “bounded-concurrent” setting; instead we need a
more flexible notion (that, roughly speaking, mirrors straight-line simulation).

Although we have non-black-box simulation techniques at our disposal, we do not rely on
the multiple slots approach of Pass [Pas04b] to build simulation soundness directly into our
protocols. Instead, by relying on the techniques in the aforementioned two works, we obtain
a more modular approach where non-malleability and simulation soundness are obtained
with the help of an underlying non-malleable commitment. In this sense, the structure of
our bounded-concurrent protocol is fundamentally different from that of [Pas04b] to achieve
bounded-concurrent MPC. We now provide more details.

The high-level structure of our protocol is similar to that of [GKP18] where the MPC
protocol is obtained in two steps. First, we obtain a (constant-round) black-box construction
of a bounded-concurrent OT protocol. Next, we compose this OT protocol with an existing
constant-round OT-hybrid UC-secure MPC protocol. We elaborate on each step below. We
remark that we consider concurrent security in the interchangeable-roles setting. So, in
the case of OT, the adversary can participate in a session as the sender while concurrently
participating in another session as the receiver.

3.1.1 Black-Box (Constant-Round) Bounded-Concurrent OT

Our OT protocol is very similar to the OT protocol of [GKP18] (which in turn is based on the
high-level cut-and-choose structure of [LP12] inspired from [HIK+11, CDMW09, Wee10]) ex-
cept that we will implement the basic commitment scheme using a “straight-line extractable”
commitment (with some other properties that we will discussion soon). At a high level, the
OT protocol of [GKP18] proceeds as follows:

1. The protocol is based on cut-and-choose techniques. Therefore, as the first step of the
protocol, the sender S and the receiver R commit to their challenges for future stages
in advance. This step uses a two-round statistically binding commitment scheme Com.
This step avoids selective opening attacks. The ideal-world simulator can extract these
challenges by brute-force to perform the simulation. This is the only non-polynomial time
step of this simulator (and the one we wish to replace).
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2. Next, S and R execute many instances of a semi-honest OT protocol in parallel, where
in each instance S and R use the inputs and the randomness that are generated by a
coin-tossing protocol.

3. Next, S and R use a non-malleable commitment scheme NMCom to set up a “trapdoor
statement” which, roughly speaking, commits a witness to the fact that the trapdoor
statement is false. This step, following [GGJS12], makes it possible to commit to a false
witness in the security proof while ensuring (due to non-malleability of NMCom) that
the adversary still continues to commit to a correct witness (so that his statement is still
false). The step is performed by modifying different stages of one session at a time.
This ensures that changes in one interactive part of the protocol are not affected by what
happens in later stages of that same session.

4. Finally, S and R use OT combiner which allows them to execute an OT with their
real inputs securely when most of the OT instances in the previous steps are correctly
executed. To check that most of the OT instances in the previous steps were indeed
correctly executed, S and R do use cut-and-choose where S (resp., R) chooses a constant
fraction of the OT instances randomly and R (resp., S) reveals the input and randomness
that it used in those instances so that S (resp., R) can verify whether R executed those
instances correctly.

3.1.1.1 Replacing Com with Straight-Line Extractable Commitment

Our goal is to eliminate brute-force extraction using code of the adversary. In doing so,
we have to ensure that (1) the interactive nature of the commitment protocol so obtained
does not result into new malleability issues in the proof; and (2) the extraction step can be
done in a modular fashion (especially in straight-line) so that we can keep the overall proof
structure of [GKP18] where one session is modified at a time.

As a starting point, let us consider the Barak-Lindell extractable commitment scheme
[BL02]. In their construction, the committer C first sends an enhanced trapdoor permuta-
tion f .2 Then the two parties involve in the following 3-step coin tossing: (1) R sends a
commitment Com(r1) to a random string r1; (2) C replies with a random string r2; (3) R
then sends r1 with a ZK argument on the fact that this r1 is indeed the random string he
committed in step (1). Both parties learn the value r = r1 ⊕ r2 as the output of the coin
tossing. To commit to a (single-bit) message σ, C sends σ masked by the hard-core bit of
f−1(r). An extractor can use the ZK simulator to bias the coin-tossing result to some value
r′, for which it knows the preimage of f−1(r′). Thus, it can extract the committed value.

Straight-Line Extraction. To adapt the above scheme for our purpose, we need to ensure
that the construction is black-box and that the committed value can be extracted in a
straight-line fashion. Toward this goal, we replace R’s commitment and ZK argument with
the protocol of Goyal et al. [GOSV14]. More specifically, [GOSV14] provides a “commit-
and-prove” primitive ΠZK where:

2In their original construction, C sends a trapdoor permutation (TDP) f and then proves in zero-
knowledge that f is indeed a valid TDP. To make this step black-box, C can send an enhanced TDP
instead (without the need of ZK proof).
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– they provide a (non-interactive statistically-binding) commitment scheme3 called VSSCom
using which one can send a commitment y to a string x;

– and later, prove to a verifier, that “y is a commitment to string x such that φ(x) = 1”
where φ is an arbitrary function.

In particular, φ is chosen to be the NP-relation for an NP-complete language in [GOSV14]
to get a black-box version of Barak’s result [Bar01].

In our case, we will choose φ to be the identity function Ix(·).4 Therefore, the Barak-
Lindell commitment protocol mentioned above can be implemented in a black-box manner
by ensuring that: (1) R uses VSSCom to prepare the commitment to r1, and (2) protocol
ΠZK is the aforementioned proof protocol with φ := Ir1(·).

At a high level, this approach meets our needs for a black-box construction that supports
straight-line extraction. But more caution is needed to handle the actually simulation as we
are in the (bounded) concurrent setting. We will address this concern in Section 3.1.1.2.

Removing TDPs. Since we aim to have a construction assuming only semi-honest OTs
(and CRHFs), we also want to remove the reliance on the (enhanced) TDPs. As the first
attempt, we ask C to secret-share the message σ to λ random shares using exclusive-or. Then
let the receiver learn through a special OT (e.g. an n/2-out-of-n OT) half of these shares.
Next, we invoke the above (black-box) version of coin-tossing in Barak-Lindell protocol to
determine another n/2 shares that C will decommit to. Due to the pseudo-randomness of the
coin-tossing result, R will learn the the shares that “complement” what he learned through
OT with only negligible probability. Thus, we can hope to achieve (computational) hiding.
Meanwhile, an extractor could always bias the coin-tossing result to the complement shares,
thus allowing it to extract the value σ.

However, there are several issues with this approach. First, the sender’s (committer’s)
input to the OT must be the decommitment information to the secret shares. Otherwise,
a malicious sender can use arbitrary values in the OT execution, which will disable our
extraction strategy.5 Also, this construction suffers from selective opening attacks (SOAs)
as the values in the commitments are correlated. It is not clear how we can use standard
techniques (e.g. asking R to commit to his challenges in advance, or using another coin-
tossing to determine his challenges) to get rid of SOAs. This is because we need to keep R’s
challenges in this stage hidden from C (to ensure extractability).

To solve this problem, we let C commit to 2λ secret shares of σ, denoted as {Com(si,b)}i∈[λ],b∈{0,1}.
Then λ 1-out-of-2 OT instances are executed in parallel, where R learns (the decommitment
to) one share out of (si,0, si,1) in the i-th OT. Next, we can use the Barak-Lindell coin tossing
to determine an λ-bit string r = r1‖ . . . ‖rλ. Finally, C decommits to {Com(si,ri)}i∈[λ]. In
this construction, R’s input to (a single) OT can be guessed correctly with probability 1/2.

3In [GOSV14], this commitment was required to be statistically-hiding. But it can be replaced with a
statistically-binding scheme if certain modifications are made to the proof phase. See Remark 3.3.1 for more
details.

4Note Ix(y) = 1 if and only if y = x is well defined and the “code” of Ix requires only the knowledge of
x.

5Note that we cannot ask the committer to prove in zero-knowledge that he uses the committed shares as
sender’s input in the OT execution, because such proof will make non-black-box use of both the commitment
and OT.
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By a careful design of hybrids, we show this is sufficient to for us to get rid of SOAs, thus
allowing us to prove hiding property (see Section 3.4). Moreover, the extractor can still learn
all the shares by biasing ri to the complement to its input in the i-th OT instance (for all
i ∈ [λ]).

Merging with [GKP18]. Finally, to ensure that the interactive nature does not create
non-malleability issues, we will ask each party to commit to a long-enough random string,
using the above extractable commitment. This step is done as the foremost step in our
OT protocol (called “Step 0”). Then each party will use the long random string as one-
time pad to “mask” the values that they want to commit to during the execution of our OT
protocol. Now, we can rely on the structure of the hybrid proof of [GKP18], which first deals
with all stages of a given session and then moves on to the next session in a specific order
(determined by the transcript). The key observation here is that since Step 0 is performed
ahead of all other steps for a fixed session s, changes in later stages of s cannot affect what
happens in Step 0 (for example, issues of malleability and simulation-soundness do not arise).
Furthermore, since any rewinding-based proofs of [GKP18] are only relevant to later stages,
they do not rewind Step 0 of sessions s.

Remark 3.1.1. Ostrovsky et al. [OSV15] showed how to achieve the same as [GOSV14]
while relaxing the assumption from CRHFs to one-way functions (OWFs). But we cannot
use their approach (or any of the prior approaches that perform non-black-box simulation
under OWFs) since simulators in these approaches are not straight-line. It uses both the
adversary’s code and rewinding to get a OWF-based construction.

3.1.1.2 Robust-ZK for Dealing with Bounded Concurrency

The final issue that we need to address is how the non-black-box simulation will actually be
performed corresponding to protocol ΠZK (in Step 0) mentioned above. The main issue is
that there are concurrently many sessions of ΠZK executing simultaneously. In particular,
if there are m sessions of OT protocol, then there will be ` = 2m sessions of ΠZK . Simply
replacing the prover with the non-black-box simulator may not result in polynomial-time
simulation.

An immediate idea is that if ΠZK is bounded-concurrent ZK for up to ` sessions, then we
can use the concurrent non-black-box simulator to simulate Step 0 of all m sessions of the
OT protocol at once. This allows us to bias coin-tossing for all m sessions and then we can
design hybrids exactly as in [GKP18].

Unfortunately, bounded-concurrent ZK only guarantees self composition; i.e., it can only
deal with messages of protocol ΠZK . In our case, ΠZK is part of a larger protocol execution
and the adversary receives messages from different stages of all sessions. We thus need a
more robust notion of non-black-box simulation which, roughly speaking, (a) is straight-line,
and (b) enables bounded-concurrent composition of ZK protocols even in the presence of
external messages as long as the total communication outside the ZK protocol is a-priori
bounded.

We formulate this notion explicitly in Section 3.3 and call it robust zero-knowledge. The
notion requires that the view of a (standalone) verifier V ∗ who interacts with an external
party B can be simulated by a simulator S only on input the code of V ∗. The simulator
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is not allowed to rewind V ∗ or B. However, both B and S are allowed to see each others
messages (which is essential to make sure that many concurrent instances of the simulators
compose seamlessly). This yields a notion that is similar in spirit to UC zero-knowledge
[Can01] and implies bounded-concurrent ZK.

We remark that most ZK protocols based on non-black-box simulation, with suitable
adjustment of parameters, can actually handle arbitrary external messages (and not just the
messages of the same protocol) without any modification. This observation was first used in
Barak’s original work [Bar01], and finds applications in other places [BL02, PR03, Pas04b].
In particular, it also holds for the protocol of Goyal et al. [GOSV14] and is implicit in
their security proof. Thus, these protocols already achieve the (bounded) robust-ZK notion.
Robust-ZK is just a convenient tool to help in the hybrid proofs.

By setting the parameters of ΠZK so that it is `-robust-ZK allows us to replace the provers
of ΠZK with simulator instances in Step 0 of any given session s while maintaining the overall
structure and sequence of hybrids in [GKP18] where stages of one session are handled at any
given time. This gives us m-bounded concurrent OT.

3.1.2 Composition of OT with OT-hybrid MPC

The final step of our construction is the same as in [GKP18]. Namely, we compose our
bounded-concurrent OT protocol with a OT-hybrid UC-secure MPC protocol (i.e., replace
each invocation of the ideal OT functionality in the latter with an execution of the former),
thereby obtaining a MPC protocol in the plain model. While selecting the parameters, we
have to ensure we adjust the parameters of ΠZK to allow long enough messages so that
simulation can be performed for the MPC protocol instead of the OT protocol. Since we
only proved bounded-concurrent self composition for OT (not full UC-security), we do not
get a proof for the MPC protocol right away. Hence, we prove the security by analyzing the
MPC protocol directly. In essence, what we do is to observe that the security proof for our
OT protocol (which consists of a hybrid argument from the real world to the ideal world)
still works even after the OT protocol is composed with a OT-hybrid MPC protocol.

3.2 Preliminaries

In the following, we present additional preliminaries that are necessary for this chapter.

3.2.1 Shamir’s Secret Sharing

We first recall Shamir’s secret sharing scheme. (In this chapter, we use only the (6n+1)-out-
of-10n version of it.) To compute a (6n+ 1)-out-of-10n secret sharing s = (s1, . . . , s10n) of a

value v ∈ GF (2n), we choose random a1, . . . , a6n ∈ GF (2n), let p(z)
def
= v+a1z+ · · ·+a6nz

6n,
and set si := p(i) for each i ∈ [10n]. Given s, we can recover v by obtaining polynomial p(·)
through interpolation and then computing p(0). We use Decode(·) to denote the function
that recovers v from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s
′
10n),

we say that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥ x · 10n. If s and s′ are
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not x-close, we say that they are (1 − x)-far. Since the shares generated by (6n + 1)-out-
of-10n Shamir’s secret sharing scheme are actually a codeword of the Reed-Solomon code
with minimum relative distance 0.4, if a (possibly incorrectly generated) sharing s is 0.8-
close to a valid codeword w, we can recover w from s efficiently by using, for example, the
Berlekamp-Welch algorithm.

3.2.2 Non-Malleable Commitment Schemes.

We recall the definition of non-malleable commitment schemes from [LP09]. Let 〈C,R〉 be a
tag-based commitment scheme (i.e., a commitment scheme that takes a n-bit string (a tag)
as an additional input). For any man-in-the-middle adversary M, consider the following
experiment. On input security parameter 1n and auxiliary input z ∈ {0, 1}∗,M participates
in one left and one right interactions simultaneously. In the left interaction,M interacts with
the committer of 〈C,R〉 and receives a commitment to value v using identity id ∈ {0, 1}n
of its choice. In the right interaction, M interacts with the receiver of 〈C,R〉 and gives a

commitment using identity ĩd of its choice. Let ṽ be the value that M commits to on the
right. If the right commitment is invalid or undefined, ṽ is defined to be ⊥. If id = ĩd, value
ṽ is also defined to be ⊥. Let mim(〈C,R〉,M, v, z) be a random variable representing ṽ and
the view of M in the above experiment.

Definition 3.2.1. A commitment scheme 〈C,R〉 is non-malleable if for any PPT adversary
M, the following are computationally indistinguishable.

– {mim(〈C,R〉,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗
– {mim(〈C,R〉,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

The above definition can be generalized naturally so that the adversary gives multiple
commitments in parallel in the right interaction. The non-malleability in this generalized
setting is called parallel non-malleability. (It is known that this “one-many” definition im-
plies the “many-many” one, where the adversary receives multiple commitments in the left
session [LPV08].)

Robust Non-Malleability. We next recall the definition of k-robust non-malleability
(a.k.a. non-malleability w.r.t. k-round protocols) [LP09]. Consider a man-in-the-middle ad-
versaryM that participates in one left interaction—communicating with a machine B—and
one right interaction—communicating with a receiver a commitment scheme 〈C,R〉. As in
the standard definition of non-malleability, M can choose the identity in the right interac-
tion. We denote by mimB,M

〈C,R〉(y, z) the random variable consisting of the view of M(z) in

a man-in-the-middle execution when communicating with B(y) on the left and an honest
receiver on the right, combined with the value M(z) commits to on the right. Intuitively,
〈C,R〉 is non-malleable w.r.t. B if mimB,M

〈C,R〉(y1, z) and mimB,M
〈C,R〉(y2, z) are indistinguishable

whenever interactions with B(y1) and B(y2) are indistinguishable.

Definition 3.2.2. Let 〈C,R〉 be a commitment scheme and B be a PPT ITM. We say that
a commitment scheme 〈C,R〉 is non-malleable w.r.t. B if the following holds: For every two
sequences {y1

n}n∈N and {y2
n}n∈N such that y1

n, y
2
n ∈ {0, 1}n, if it holds that for any PPT ITM
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A, {
〈B(y1

n),A(z)〉(1n)
}
n∈N,z∈{0,1}∗

c
≈
{
〈B(y2

n),A(z)〉(1n)
}
n∈N,z∈{0,1}∗ ,

it also holds that for any PPT man-in-the-middle adversary M,{
mimB,M

〈C,R〉(y1, z)
}
n∈N,z∈{0,1}∗

c
≈
{

mimB,M
〈C,R〉(y2, z)

}
n∈N,z∈{0,1}∗

.

〈C,R〉 is k-robust if 〈C,R〉 is non-malleable w.r.t. any machine that interacts with the
adversary in k rounds. We define parallel k-robustness naturally.

Black-Box Instantiation. There exists a constant-round black-box construction of a
parallel (actually, concurrent) non-malleable commitment scheme based on one-way func-
tions [GLOV12]. Furthermore, Garg, Kiyoshima, and Pandey [GKP18] show that any paral-
lel non-malleable commitment can be transformed into a parallel k-robust non-malleable one
in the black-box way by using collision-resistant hash functions (more precisely, by using sta-
tistically hiding commitment schemes, which can be constructed from collision-resistant hash
functions). If k is constant, the round complexity of their transformation increases only by a
constant factor in this transformation. Thus, there exists a O(1)-round parallel O(1)-robust
nonmalleable commitment scheme assuming the existence of CRHFs [GLOV12, GKP18].

3.2.3 Bounded-Concurrent MPC with Interchangeable Roles

We recall the definition of m-bounded concurrent secure computation. Parts of this section
are taken verbatim from [Pas04b] with minor modification, following [GGS15], to allow for
interchangeable roles; these in turn are a slight generalization of “security with abort and
no fairness” of [GL02] and concurrent secure two-party computation with adaptive inputs
of [Lin04]. The basic formulation and setup of secure computation follows [GL91, MR92,
Bea92, Can00a].

We consider the case of self composition where m simultaneous executions of the same
MPC protocol Π take place. We will consider security against interchangeable roles where a
party controlled by the adversary can play different roles in different sessions (see description
below). We will only consider the malicious and static setting where the set of corrupted
parties is fixed at the beginning of the protocol and the corrupted parties execute the in-
structions provided by the adversary. The scheduling of message delivery is decided by the
adversary. Since security against interchangeable roles is impossible without identities, we
assume each party has a unique identity id ∈ {0, 1}n. Since we do not consider fairness, the
adversary will always receive its own output and can then decide when (if at all) the honest
parties will receive their output.

Multi-Party Computation. A multi-party protocol problem for k parties P1, . . ., Pk is
cast by specifying a random process that maps vectors of inputs to vectors of outputs (one
input and one output for each party). We refer to such a process as a k-ary functionality
and denote it f : ({0, 1}∗)k → ({0, 1}∗)k, where f = (f1, ..., fk). That is, for every vector of
inputs x = (x1, ..., xk), the output-vector is a random variable

(
f1(x), ..., fk(x)

)
ranging over

vectors of strings. The output of the i’th party (with input xi) is defined to be fi(x). In
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the context of concurrent composition, each party actually uses many inputs (one for each
execution) and these may be chosen adaptively based on previous outputs. The fact that
m-bounded concurrency is considered relates to the allowed scheduling of messages by the
adversary in the protocol executions; see the description of the real model below.

Concurrent Execution in the Ideal Model. Next, we describe the concurrent execution
of the protocol in the ideal world. Unlike the stand-alone setting, here the trusted party
computes the functionality many times, each time upon different inputs.

Let Π := (P1, . . . , Pk) be an MPC protocol for computing a k-ary functionality f and n
be the security parameter. For simplicity we assume that the length of the inputs of each
party is n. In total, let there be N parties: Q1, . . . , QN and let P j

i denote the party playing
the role of Pi in session j (for i ∈ [k], j ∈ [m]). The adversary can corrupt an arbitrary
subset of these parties.

Let I ⊂ [N ] denote the subset of corrupted parties. An ideal execution with an adversary
who controls the parties I proceeds as follows:

1. Inputs: The inputs of the parties Q1, ..., QN in each session j are determined using PPT
machines M1, ...,Mk which take as input the session number j, some inputs x1, ..., xN ,
and the outputs that were obtained from executions that have already concluded. Note
that the number of previous outputs range from zero (when no previous outputs have
been obtained) to some polynomial in n that depends on the number of sessions initiated
by the adversary.

2. Session initiation: When the adversary initiates the session number j ∈ [m] by sending
a (start-session, j) to the trusted party, the trusted party sends (start-session, j) to parties
P j
i where i ∈ [k].

3. Honest parties send inputs to trusted party: Upon receiving (start-session, j) from
the trusted party, each honest party P j

i applies its input-selecting machine Mi to its initial
input xi, the session number j and its previous outputs, and obtains a new input xi,j.
In the first session xi,1 = Mi(x, 1). In later sessions j, xi,j = Mi(x, j, αi,1...αi,ω) where ω
sessions have concluded and the outputs of P j

i were αi,1, ..., αi,ω. Each honest party P j
i

then sends (j, xi,j) to the trusted party.

4. Corrupted parties send inputs to trusted party: Whenever the adversary wishes
it may ask a corrupted party P j

i to send a message (j, x′i,j) to the trusted third party, for

any x′i,j ∈ {0, 1}n of its choice. A corrupted party P j
i can send the pairs (j, x′i,j) in any

order it wishes and can also send them adaptively (i.e., choosing inputs based on previous
outputs). The only limitation is that for any j, at most one pair indexed by j can be sent
to the trusted party.

5. Trusted party answers corrupted parties: When the trusted third party has received
messages (j, x′i,j) from all parties (both honest and corrupted) it sets xj = (x′1,j, ..., x

′
k,j).

It then computes f(xj) and sends (j, fi(x
′
j)) to every corrupted P j

i .

6. Adversary instructs the trusted party to answer honest parties: When the
adversary sends a message of the type (send-output, j, i) to the trusted party, the trusted
party directly sends (j, fi(x

′
j)) to party P j

i . If all inputs for session j have not yet
been received by the trusted party the message is ignored. If the output has already been
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delivered to the honest party, or i is the index so that P j
i is a corrupted party, the message

is ignored as well.

7. Outputs: Each honest party always outputs the vector of outputs that it received
from the trusted party. The corrupted parties may output an arbitrary (probabilistic
polynomial-time computable) function of its initial input and the messages obtained from
the trusted party.

Let f : ({0, 1}∗)k → ({0, 1}∗)k be a k-ary functionality, where f = (f1, ..., fk). Let S be
a non-uniform PPT machine (representing the ideal-model adversary) and let I ⊂ [N ] (the
set of corrupted parties) be such that for every i ∈ I, the adversary S controls Qi. Then the
ideal execution of f with security parameter n, input-selecting machines M = M1, ...,Mk,
initial inputs x = (x1, ..., xN) and auxiliary input z to S, denoted IDEALf,I,S,M(n, x, z), is
defined as the output vector of the parties and S resulting from the ideal process described
above.

We remark that the definition of the ideal model includes the bound m on the concurrency
although it is possible to define it without it.

Execution in the Real Model. We next consider the execution of Π in the real world. We
assume that the parties communicate through an asynchronous fully connected and authentic
point-to-point channel but without guaranteed delivery of messages.

Let f , I be as above and let Π be a multi-party protocol for computing f . Furthermore,
let A be a non-uniform PPT machine such that for every i ∈ I, the adversary A controls
Qi. Then, the real m-bounded concurrent execution of Π with security parameter n, input-
selecting machines M = M1, ...,Mk, initial inputs x = (x1, ..., xN) and auxiliary input z to
A, denoted REALmΠ,I,A,M(n, x, z), is defined as the output vector of the honest parties and
the adversary A resulting from the following process. The parties run concurrent executions
of the protocol, where every party initiates a new session whenever it receives a start-session
from the adversary. The honest parties then apply their input-selecting machines to their
initial input, the session number and their previously received outputs, and obtain the input
for this new session. The scheduling of all messages throughout the executions is controlled
by the adversary.

Security as Emulation of a Real Execution in the Ideal Model. The security of Π
under bounded composition is defined by saying that for every real-model adversary there
exists an ideal model adversary that can simulate an execution of the secure real-model
protocol. Formally:

Definition 3.2.3 (m-Bounded Concurrent Security in the Malicious Model). Let m = m(n)
be a polynomial and let f, k,N and Π be as above. Protocol Π is said to securely compute
f under m-bounded concurrent composition if for every real-model non-uniform PPT ad-
versary A, there exists an ideal-model non-uniform probabilistic expected polynomial-time
adversary S, such that for all input-selecting machines M = M1, ...,Mk, every z ∈ {0, 1}∗,
every x = (x1, ..., xN), where x1, ..., xN ∈ {0, 1}n and every I ⊂ [N ],{

IDEALf,I,S,M(n, x, z)
}
n∈N

c
≈
{

REALmΠ,I,A,M(n, x, z)
}
n∈N

That is, concurrent executions of Π with A cannot be distinguished from concurrent invoca-
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tions of f with S in the ideal model.

3.3 Robust Zero-Knowledge Commit-and-Prove Pro-

tocols

Goyal et al. [GOSV14] present a new non-black-box zero-knowledge argument for NP. Their
protocol (with slight modification for the “commit-and-prove” form) is presented in Proto-
col 3.3.1.

Protocol 3.3.1: `-Robust Commit-and-Prove for φ [GOSV14]

Common Input: Security parameter 1n, robustness parameter `, property φ

Auxiliary Input to C ′: String w ∈ {0, 1}n to be committed.

Commit Phase:

1. C ′ generate VSS representation of w: VSSw = (wVSS
1 , ..., wVSS

n ).

2. C ′ creates commitments to each share with independent randomness ρi ∈ {0, 1}n, to
get ci = Com(wVSS

i ; ρi) for i = 1, ..., n.

3. C ′ sends VSSCom(w) := (c1, ..., cn).

Comment: Note that `, φ are not required in this phase. In [GOSV14], the commit-
phase is actually a part of the “proof phase” since the goal is to describe a system for
NP. We choose this form to emphasize the commit-and-prove nature of their protocol.

Proof Phase:

1. Trapdoor-generation:

(a) C ′ runs BBCom(0n) with R′. Let z be the commitment so obtained.

(b) R′ sends a random string r of length n+ `(n). The public theorem a is defined as:
a = (z, r, t). This message is referred to as the long message.

2. Actual proof for φ:

(a) Commitment of PCPP: C ′ runs BBCom(0n) and sends the commitments.

(b) PCPP Queries: R′ sends random tapes r1, ..., r`d from which C ′ and R′ compute

(qji , p
j
i ) = Qpcpx(a, rj, i) with i ∈ [k], where k is the security parameter for the PCPP.

Let IMj = {qj1, ..., q
j
k} and Iπj = {pj1, ..., p

j
k}.

(c) Proof: C ′ runs BBProve(ψ, IM , Iπ), where the predicate ψ is true iff:

– Dpcpx outputs 1 on selected positions of M and π; or
– There exist {(wVSS

i , ρi)}ni=1 such that ci = Com(wVSS
i ; ρi) for all i and

φ
(
Recon(wVSS

1 , ..., wVSS
n )

)
= 1.

R′ accepts the proof if and only if the verifier of BBProve accepts.
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Let us briefly recall how their protocol works. They first construct a black-box size-hiding
commit-and-prove protocol (BBCom,BBProve). In Protocol 3.3.1, the committer commits
to the secret shares of the witness via BBCom. The Proof Phase combines PCP of Proximity
(PCPP) [BGH+04] and Barak’s non-black-box ZK protocol [Bar01]. The committer C ′ (the
prover) first sends z which is supposed to be a commitment to a Turing machine M . An
honest prover will just commit to 0n. Once R′ replies with a string r, the trapdoor theorem
is set to a of the pair language LP = {(a := (z, r, t), Y ) : ∃M ∈ {0, 1}∗ s.t. Y ← ECC(M),
and M(z) = r within t steps.} (where ECC(·) is a binary error correcting code tolerating a
constant fraction δ > 0 errors). Then C ′ uses BBProve to prove either the trapdoor theorem
is true or φ(w) = 1.

Note that the proof for the trapdoor theorem is conducted via PCPP. Specifically, com-
mitment to PCPP proof π is sent to R′ (honest prover commits to 0n, as shown in 2-(a) of
Proof Phase). R′ generates PCPP queries on Y (the private theorem) and π by running al-
gorithm Qpcpx. C

′ then proves that the PCPP decision algorithm Dpcpx verifies to 1. Details
of component protocols such as BBCom,BBProve, etc. are not necessary and omitted; see
[GOSV14] for their details.

This protocol makes only black-box use of CRHF; it is also public-coin, constant-rounds,
and has negligible soundness error. In fact, it enjoys the following properties:

(i) The protocol is actually a “commit-and-prove” protocol for arbitrary polynomial-size cir-
cuits φ. That is, it consists of two phases: in the “commit” phase, the committer commits
an arbitrary string w ∈ {0, 1}n using a special commitment scheme called VSSCom, and
later, in the “proof” phase, it can prove in zero-knowledge that the committed string sat-
isfies φ; i.e., φ(w) = 1 where w is uniquely determined from the transcript of the commit
phase. For concreteness, the “commit-and-prove” form of [GOSV14] ZK is depicted in
Protocol 3.3.1.6

(ii) To prove zero-knowledge, the simulator relies on Barak’s technique of committing the
verifier’s code [Bar01]. Consequently, the protocol inherits several properties of Barak’s
original protocol (e.g., public-coin and constant rounds). In particular, the protocol has
a “preamble” phase where the verifier sends a random string r; the simulator is “straight-
line” even in the presence of arbitrary (external) communication of a-priori bounded length
`(n) provided that |r| is sufficiently bigger than `(n).

Remark 3.3.1 (On the Hiding Property of VSSCom). In the Commit Phase of Proto-
col 3.3.1, we define VSSCom, which consists of statistically-binding commitments Com on
each VSS shares of the value to be committed to (the witness w in our protocol). However,
in the original construction of the [GOSV14] ZK, the underlying Com actually needs to be
statistically-hiding. This is because that their construction relies on the MPC-in-the-head
technique, where a subset (verifier’s challenge set) of the commitments are revealed to the
verifier for the view-consistency checking. Moreover, the security of their construction relies
on the hiding of the remaining unopened commitments. Since the challenge set is picked by
the verifier, a statically-hiding commitments must be used to resolve the selective-opening

6The protocol for proving x ∈ L for L ∈ NP is obtained by setting w to be a witness for x (under an
appropriate relation R for L) and committing to it as the first step of the proof using “commit” phase,
followed by the “proof” phase for φ(·) := R(x, ·).
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problem [Hof11].
We remark that there are two alternative ways to avoid the selective-opening problem,

while relying only on statistically-binding commitment:

(1) Ask V to commit to the challenge sets before the P ’s first message, and to decommit
to the challenge sets once it receives P ’s first message. This approach is taken by, e.g.,
[PW09, GLOV12, Kiy14].

(2) After P ’s first message, determine the challenge set by a coin-tossing protocol between
P and V , instead of letting V pick the challenge set. This approach appears in [Lin13,
CLP20a] (see [CLP20b, Section 4.1] for a detailed demonstration in the MPC-in-the-head
setting).

Both of these approaches can be taken if one wants to replace the statistically-hiding commit-
ment in VSSCom and BBCom, while maintaining the security of the [GOSV14] construction.
But they were not exploited as [GOSV14] pursued a public-coin construction. As another
concern, these approaches only lead to computational ZK property, while the original con-
struction in [GOSV14] is statistical ZK.

In contrast, we are able to make use of these approaches in the current work. We take
approach (2) as it not only gives a cleaner construction, but also maintains the (weak) Proof-
of-Knowledge property of the original [GOSV14] ZK. Concretely, we modify the BBProve such
that V ’s challenge set will be determined by the following coin-tossing:

– V first sends an extractable commitment to a random string r1,

– P responds with a random string r1

– V then sends r1 with the decommitment information.

Other parts of BBProve remain unchanged, except that the challenge set is now defined by
the (pseudo)random string r1 ⊕ r2.

Such a modified BBProve allows us to replace the statistically-hiding commitment with a
statistically-binding one in both BBCom and VSSCom. Thus, we can safely use the statically-
binding VSSCom (as currently presented in Protocol 3.3.1).

We also remark that BBCom will not be statistically-binding, even though its underlying
commitment is replaced by a statistically-binding one. This is because that BBCom applies
the (underlying) commitment to (the paths of) a Merkle hashing tree on the target value,
resulting in information loss.

3.3.1 Robust Zero-Knowledge

To capture the above property (ii) (i.e., “straight-line simulation in the presence of bounded
external communication”), we define the notion of robust zero-knowledge. It roughly captures
the fact that the simulator does not rewind the external party to perform the simulation.
This property is implicit in the relations defined for bounded-concurrent simulation in [Bar01,
PR03]; a related but very different notion of robustness appears explicitly in the context of
non-malleability in [LPV09, GLP+15]. This notion is useful in constructing security proofs
even though it follows from [Bar01] (and similar protocols).
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Let L ∈ NP with witness relation RL, and let RL(x) := {w : RL(x,w) = 1}. Let
Π := 〈P, V 〉 be an (efficient) interactive argument system for L and B be an arbitrary
PPT itm.

For n ∈ N, L ∈ NP, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗ and y ∈ {0, 1}∗, we define the following
two experiments:

Real Experiment: The experiment starts the execution of V ∗ on input (1n, x, z) where
z denotes the auxiliary input of V ∗. During its execution, V ∗ can simultaneously
participate in two interactions (1) an execution of Π with the honest prover machine
P (1n, x, w) and (2) arbitrary (unspecified) interaction with the machine B(1n, y).

The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to P (resp., to B).

– If P receives a message from V ∗, it prepares the next message of Π, denoted a; a is
then sent to both V ∗ as well as B.

– If B receives a message from V ∗, it prepares the next message (according to the
unspecified interaction protocol between B and V ∗), say b; message b is then sent
to V ∗.

The output of this experiment is the (joint) view of V ∗, and denoted as:

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉.

Simulated Experiment: This experiment is identical to the real experiment except that:
(1) the honest prover algorithm P (1n, x, w) is replaced with a “simulator” algorithm S
which receives the code of V ∗ as input, and (2) any message V ∗ receives from B is also
provided to S.

Formally, the experiment starts an execution of V ∗(1n, x, z); V ∗ can simultaneously
participate in two interactions (1) an execution of Π with the simulator machine
S(1n, x, code[V ∗], z) and (2) arbitrary (unspecified) interaction with the machineB(1n, y).

The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to S (resp., to B).

– If S receives a message from V ∗, it prepares the next message, denoted a; a is sent
to both V ∗ as well as B.

– If B receives a message from V ∗, it prepares the next message (according to the
unspecified interaction protocol between B and V ∗), say b; message b is then sent
to both V ∗ and S.

The output of this experiment is the (joint) view of V ∗, and denoted by:

Sview
B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉.

Remark 3.3.2. Two important remarks are in order. First, the simulated experiment does
not allow rewinding by definition. Instead, it requires S to “act like the prover” of protocol
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Π; the only help S has is the code of V ∗ as well as immediate access to all messages that V ∗

receives. In particular, rewinding V ∗ may involve rewinding B and this is not allowed by the
experiment.

Second, both B and S have access to all messages V ∗ receives from the network. S must
have access to all such messages to simulate in “straight line” (since it does not have the code
of B). B is given access to these messages to facilitate (bounded concurrent) composition.
In particular, B has access to all message S (or P ) sends to V ∗ and S has access to all
messages B sends to V ∗.

Protocol Π is robust zero-knowledge if V ∗ cannot tell whether it is in the real experiment
or the simulated one. If it is robust w.r.t. only machines B that send at most ` bits, it is
called `-robust zero-knowledge. Formally:

Definition 3.3.1 (Robust Zero-Knowledge). An interactive argument system Π for a lan-
guage L ∈ NP is robust ZK w.r.t. a PPT itm B if for all PPT itm V ∗ there exists a
PPT itm S (called the robust simulator), such that:{

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉

}
n,x,w,z,y

c
≈

{
Sview

B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉

}
n,x,z,y

.

where n ∈ N, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗, y ∈ {0, 1}∗.
For a polynomial ` : N → N, Π is `-robust zero-knowledge if it is robust w.r.t. every

PPT itm B that sends at most `(n) bits. Π is robust zero-knowledge if it is `-robust zero-
knowledge for every polynomial `.

Remark 3.3.3. We remark that robust (i.e., unbounded) ZK is actually impossible (for non-
trivial languages) in the plain model since, if unbounded external communication was allowed
with B, V ∗ can just be a “dummy” adversary so that access to its code provides no advantage
to the simulator to complete the proof. This is akin to the use of dummy adversary in UC
setting and impossibility of UC-ZK for languages outside of BPP [Can01, GK90].

3.3.1.1 (Bounded) Robust ZK Implies Bounded cZK
We now demonstrate the flexibility of using robust ZK in concurrent settings. More specifi-
cally, we show that any `-robust ZK protocol Π remains ZK under bounded composition of
`′ instances for sufficiently large `.

Recall that in the `′-bounded cZK composition of protocol Π, an adversarial verifier V ∗

participates in `′ simultaneous executions of Π while controlling the scheduling of messages of
various sessions. For simplicity (only) we assume that all provers prove the same statement
x using same witness w and let viewΠ,n,x,w,z denote the view of V ∗(n, x, z) in this concurrent
execution. We say that Π is `′-bounded-cZK for language L if for every such V ∗ there exists
a simulator SV ∗ such that for all x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗:{

viewΠ,n,x,w,z

}
n,x,w,z

c
≈

{
SV ∗(n, x, z)

}
n,x,z

.

Claim 3.3.1. If a protocol Π is `-robust zero-knowledge, then it is `′-bounded cZK, for any
`′ such that `′ ·m ≤ ` where m is the length of all messages sent by the prover of protocol Π.
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Proof. We show that a simple composition of individual robust-ZK simulators for each session
yields a simulator for bounded-concurrent composition of Π.

Let V ∗ be a concurrent verifier participating in `′ concurrent sessions of Π. Let S be the
robust-ZK simulator for Π. The bounded-concurrent simulator SV ∗ , on input the code of V ∗,
x, and z, proceeds as follows:

– For each session i, SV ∗ prepares the “fake” prover algorithm Si which behaves identically to
the algorithm S(n, x, code[V ∗], z) with fresh randomness and interacts with V ∗ in session
i.

– SV ∗ initiates an execution of V ∗ with fresh randomness, relaying messages between V ∗

and fake provers (S1, . . . , S`′) as in the bounded-concurrent execution.

– When V ∗ halts, SV ∗ outputs its view.

It is straightforward to see that SV ∗ runs in polynomial time since each Si and V ∗ are
polynomial time. To prove indistinguishability, consider hybrids H0, . . . , H`′ :

– Hybrid H0. The real experiment where V ∗ concurrently interacts with (P1, .., P`′), where
Pi (i ∈ [`′]) denotes the i-th prover instance of Π on input (1n, x, w).

– Hybrid Hk (for (k ∈ [`′]). This hybrid is same as Hk−1 except that prover instance Pk
is replaced by the simulator instance of Sk (defined above). Therefore, V ∗ interacts with
algorithms (S1, ..., Sk, Pk+1, ...P`′), as the “provers.”

Note that H`′ is the simulator SV ∗ . It is easy to see that each Hk is polynomial time. We
prove that Hk−1 ≈c Hk using the robust-ZK property of Π, where k ∈ [`′].

Let Bk be the following machine: Bk incorporates (S1, ..., Sk−1, Pk+1, ..., P`′), and interacts
with V ∗ in the robust-ZK experiment as follows: Bk proceeds identically to Hk−1 so that
messages of all sessions i 6= k, are received from or sent to Bk (which internally simulates
Hk−1). All prover messages of the k-th session are expected to come from an external
machine, say M . If M is the prover instance Pk, the view of V ∗ is distributed identically to
Hk−1. Note that a copy of each message of Pk in this case is also sent to Bk at the same time
as V ∗; consequently, the internal execution of Bk (which includes S1, . . . , Sk−1) continues
without any problems. Likewise if M is the simulator instance Sk, V

∗’s view is distributed
identically to Hk; note that a copy of each message of Sk (resp., Bk) in this case is also
sent to Bk (resp., Sk) at the same time as V ∗. Consequently executions of both Sk and Bk

continues without any problems.
Finally, if m is the total communication from a single prover instance, the external

communication to V ∗ from Bk is bounded by m`′ ≤ `; furthermore, this condition also holds
from the point of view of each Si instance internal to Bk (as desired). It follows that if Π is
`-robust-ZK, it is also `′-bounded concurrent.

3.3.2 Constructions of `-Robust ZK

As noted earlier, Barak’s bounded cZK protocol is also `-robust ZK, although it requires
non-black-box use of hash functions [Bar01]. The variant of Barak’s technique by Goyal et
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al. [GOSV14] makes only black-box use of such functions and achieves the same result.7 To
summarize, we have the following theorem from [GOSV14] (restated in our language).

Theorem 3.3.1 (Black-Box `-Robust Zero-Knowledge for NP). If there exists a family H of
collision-resistant hash functions, then for every polynomial `, there exists a constant round
public coin `-robust zero-knowledge interactive argument for NP which requires only oracle
access to functions in H.

As noted earlier, the preceding theorem is actually a corollary of the more general theorem
that proof-phase of the commit-and-prove protocol depicted in Protocol 3.3.1 is `-robust. We
refer the reader to [GOSV14] for a formal definition of “commit-and-prove” protocols. We
only recall the following properties for Protocol 3.3.1:

– The proof-phase is performed only for the statement defined by the transcript of the
commit-phase.

– For each transcript, the receiver gets only one (interactive) proof from the committer
during the proof-phase. The zero-knowledge property (as well as the implicit `-robust
zero-knowledge) is then required only for this single execution of the proof-phase. This
suffices for Theorem 3.3.1 (by simply repeating the commit-phase before every proof-
phase). See also Footnote 6.

– To get the `-robust ZK property, the length of the challenge from the verifier is modified
to be sufficiently larger than ` (as in bounded cZK in Barak [Bar01]). Note that this
requires modifying the pair language for the universal argument (and PCPP) to allow
strings of length at most `. In particular, this language is the following one:

∗ LP =
{

(a = (z, r, t), (Y )) : ∃M ∈ {0, 1}∗ and ∃y ∈ {0, 1}∗ such that Y ← ECC(M),
M(z, y) = r within t steps, and |y| ≤ |r| − n.

}
,

where ECC(·) is a binary error correcting code tolerating a constant fraction δ > 0 of
errors, M is the description of a Turing machine and n is the security parameter. We use
RLP to denote the relation defined on LP .

To summarize, we have the following theorem (from [GOSV14]):

Theorem 3.3.2 (Black-Box `-Robust Commit-and-Prove). If there exists a family H of
collision-resistant hash functions, then for every polynomial ` and every polynomial-size cir-
cuit φ, there exists a commit-and-prove protocol such that the commit-phase is statistically
binding (with at most two rounds), the proof-phase is a constant-round public-coin `-robust
zero-knowledge interactive argument for φ, and both phases require only oracle access to
functions in H.

Remark 3.3.4. We note that [GOSV14] also provides a size-hiding commitment scheme
(which cannot be statistically-binding) along with a `-robust ZK proof-phase for every φ.
However, we will not need this version of their protocol.

7Although only standalone case is discussed in [GOSV14], their security proof (just like Barak’s) also
works for bounded-concurrent case by increasing the length of verifier’s challenge and slightly modifying the
relation for the uarg appropriately.
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3.4 Straight-Line Extractable Commitments

In this section, we construct an extractable commitment scheme, assuming black-box access
to any semi-honest oblivious transfer. The construction (shown in Protocol 3.4.1) makes
black-box use of a statistically-binding commitment Com and a maliciously-secure oblivi-
ous transfer OT. For the OT, we require (computational) indistinguishability-based security
against malicious senders, and simulation-based security (ideal/real paradigm) against ma-
licious receivers. Such OTs can be constructed in a black-box manner from any semi-honest
OT [Hai08]. To ease the presentation, we show in Protocol 3.4.1 a single-bit commitment,
and talk about how to extend it to commit to strings toward the end of this section (Remark
3.4.1).

Theorem 3.4.1. Protocol 3.4.1 is a straight-line extractable statistically-binding commit-
ment scheme, which only accesses the underlying primitives in a black-box manner.

Protocol 3.4.1: `-Robust Extractable Statistically-Binding Commitment

Common Input: Security parameter 1λ, robustness parameter `.

Auxiliary Input to C: A bit σ ∈ {0, 1} to be committed.

Commit Phase:

1. C samples 2λ random bits {si,b}i∈[λ],b∈{0,1}, whose exclusive-or equals σ.

2. C and R involves in 2n independent executions of Com in parallel, where C commits to
each values in {si,b}i∈[λ],b∈{0,1} separately. Let ci,b denote the commitment to si,b. Let
di,b denote the decommitment information w.r.t. ci,b.

3. R samples independently λ− 1 random bits τ1, . . . , τλ−1
$←− {0, 1}λ−1. C and R involves

in n independent executions of OT in parallel. For the i-th OT execution (i ∈ [λ−1]), C

acts as the sender with the two private input set to Inp
(i)
0 = di,0 and Inp

(i)
1 = di,1. R acts

as the receiver with input τi. Note that at the end of this stage R learns {di,τi}i∈[λ−1].
R rejects if any of these decommitments are invalid.

4. R samples uniformly at random a bit τλ
$←− {0, 1}. C and R involves in an execution

of OT where C acts as the sender with the two private input set to Inp
(λ)
0 = dn,0 and

Inp
(λ)
1 = dλ,1. R acts as the receiver with input τλ. Note that at the end of this stage R

learns dλ,τλ . R rejects if dλ,τλ is not a valid decommitment w.r.t. cλ,τλ .

5. C and R run a coin-tossing protocol:

(a) R samples a random string r1
$←− {0, 1}λ and runs the VSS Commit Phase of

Protocol 3.3.1 to generate cr1 = VSSCom(r1). R sends cr1 .

(b) C chooses a random string r2
$←− {0, 1}λ and sends r2.

(c) R sends r1 (without decommitment information)

(d) R and C run the Proof Phase of Protocol 3.3.1 with robustness parameter `(λ) to
prove that the string r1 sent by R in Step 5-(c) is indeed the value it committed to
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in Step 5-(a).

The output of the coin-tossing phase is ch = r1⊕ r2. For i ∈ [λ], let chi denote the i-th
bit of ch.

6. C sends to R the values {di,chi}i∈[λ]. Note that these are the decommitments to
{ci,chi}i∈[λ] in Step 2. R rejects if any of these decommitments are invalid.

Reveal Phase:

1. C sends to R the values {di,b}i∈[λ],b∈{0,1} (aka all the decommitments).

2. R rejects if any of the decommitments is invalid; otherwise, R computes the decommit-
ted value as σ = ⊕i,bsi,b. (Note that si,b is contained in di,b.)

3.4.1 Proof of Theorem 3.4.1

The construction is black-box as we use the black-box commit-and-prove protocol from
[GOSV14] (presented in Protocol 3.3.1 in Section 3.3) in the coin-tossing step. Statistically-
binding property follows directly from that of the Step-2 commitment scheme Com. Next,
we focus on computationally-hiding property and extractability.

3.4.1.1 Computationally-Hiding

Let σ be an arbitrary bit in {0, 1}. For any PPT receiver R∗, we denote by VR∗(λ, σ) the
distribution over R∗’s view from an execution 〈C(σ), R∗〉 of Protocol 3.4.1, where the honest
C commits to the value σ to R∗. To prove the hiding property, we need to show that for any
PPT machine D,

AdvDλ :=
∣∣Pr[D

(
VR∗(λ, 1)

)
= 1]− Pr[D

(
VR∗(λ, 0)

)
= 1]

∣∣ ≤ negl(λ). (3.1)

In the following, we prove Inequality (3.1) by a sequence of hybrids.

Hybrid H0(λ, σ): in this hybrid, we change the way the values {si,b} are chosen. Specifically,
the hybrid does the following:

(a) It samples independently at random a bit η
$←− {0, 1} and a bit g

$←− {0, 1}.

(b) For i ∈ [λ− 1] and b ∈ {0, 1}, it samples independently si,b
$←− {0, 1}.

(c) It defines sλ,1−g := η ⊕ σ and

sλ,g := (s1,0 ⊕ s1,1)⊕ . . .⊕ (sλ−1,0 ⊕ sλ−1,1)⊕ η

(d) It then uses the honest commiter’s strategy and {si,b} defined above to finish Step 2 to 6
in Protocol 3.4.1.

(e) Once R∗ terminates, H0 gets the view VR∗0 (λ, σ) of R∗ in this execution. It invokes D on
input VR∗0 (λ, σ), and outputs whatever D outputs. Let H0(λ, σ) also denote the output
of this hybrid.
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It is straightforward to see the values {si,b} defined above are identically distributed as in
the real execution 〈C(σ), R∗〉, i.e. they constitute random secret shares whose exclusive-or
equals σ. Also, we note that the value of g does not affect this hybrid at all, as it only

introduces syntax changes. Therefore, we have VR∗0 (λ, σ)
i.d.
== VR∗(λ, σ), which implies that

∀σ ∈ {0, 1}:

Pr[D
(
VR∗(λ, σ)

)
= 1] = Pr[D

(
VR∗0 (λ, σ)

)
= 1] = Pr[H0(λ, σ) = 1] (3.2)

Hybrid H1(λ, σ): this hybrid is identical to H0(λ, σ) except that the λ-th OT (in Step 4)
are replaced with the ideal OT functionality Fot. Concretely, in Step 4, the hybrid emulates
Fot internally in the following way:

– On the committer side, it sets Inp
(λ)
0 = dn,0 and Inp

(λ)
1 = dn,1 (same as the honest commit-

ter).

– On the receiver side, it invokes the PPT ideal-world simulator SR̂
∗

with oracle access to
R̂∗, which is the residual strategy of R∗ with the view fixed up to the beginning of Step
4. Note that the existence of S is guaranteed by the security of OT against corrupted
receiver.

– During the execution, SR̂
∗

may send a bit b which is meant to the ideal-world receiver’s
input to Fot (the actually input of R∗ “extracted” by S). In this case, the hybrid responds

with Inp
(λ)
b = dn,b.

– Once SR̂
∗

stops and outputs the simulated view for R̂∗, the hybrid continues to finish the
execution of Step 5-6 in the same way as in H0(λ, σ). (Note that simulated view for R̂∗

contains necessary information to recover the status of R∗ up to the end of Step 4. The
hybrid can then use it to finish the remaining steps.)

Similar as in H0, we use VR∗1 (λ, σ) to denote the view of R∗ in this execution, and use
H1(λ, σ) to denote the output of this hybrid. By the security of OT against malicious R∗,
the VR∗1 (λ, σ) should be computationally indistinguishable from VR∗0 (λ, σ). This implies that
∀σ ∈ {0, 1}:

Pr[H1(λ, σ) = 1] = Pr[H0(λ, σ) = 1]± negl(λ) (3.3)

Hybrid H2(λ, σ): H2(λ, σ) is identical to H1(λ, σ) except that it aborts and outputs a

special symbol ⊥ if b = 1 − g. Recall that b is the query of SR̂
∗

in Step 4 of H1 (and also
H2). Recall that the bit g is picked uniformly at random, independent of the view of R∗.
Therefore, H2 aborts with probability exactly 1/2. This implies ∀σ ∈ {0, 1},

Pr[H2(λ, σ)
)

= 1] =
1

2
· Pr[H1(λ, σ)

)
= 1] (3.4)

Hybrid H3(λ, σ): H3(λ, σ) is identical to H2(λ, σ) except that it aborts and outputs a
special symbol ⊥ if chλ = 1 − g (note that the change in H2 already ensures that g = b,
given that this hybrid does not abort). Recall that chλ is the last bit of the result of the
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Step-5 coin-tossing in H2 (and also H3). Since the output of Step-5 coin-tossing should be
pseudo-random, the probability Pr[chλ = 1 − g] is negligibly close to 1/2. Thus, we have
∀σ ∈ {0, 1},

Pr[H3(λ, σ)
)

= 1] =
1

2
· Pr[H2(λ, σ)

)
= 1]± negl(λ) (3.5)

where the negl(λ) term is due to the negligible possibility that R∗ breaks the security of
Step-5 coin-tossing.

We now finish the proof for computationally-hiding property by showing the following
claim.

Claim 3.4.1. ∣∣Pr[H3(λ, 1)
)

= 1]− Pr[H3(λ, 0) = 1]
∣∣ ≤ negl(λ) (3.6)

Before presenting the proof for Claim 3.4.1, let us show why it closes the proof for
computationally-hiding property of Protocol 3.4.1. First, note that Equations (3.2) to (3.5)
imply that: ∣∣Pr[D

(
VR∗(λ, 1)

)
= 1]− Pr[D

(
VR∗(λ, 0)

)
= 1]

∣∣
=

∣∣Pr[H0(λ, 1) = 1]− Pr[H0(λ, 0) = 1]
∣∣

=
∣∣Pr[H1(λ, 1) = 1]− Pr[H1(λ, 0) = 1]± negl(λ)

∣∣
= 2 ·

∣∣Pr[H2(λ, 1) = 1]− Pr[H2(λ, 0) = 1]± negl(λ)
∣∣

= 4 ·
∣∣Pr[H3(λ, 1) = 1]− Pr[H3(λ, 0) = 1]± negl(λ)

∣∣
≤ 4 ·

∣∣Pr[H3(λ, 1) = 1]− Pr[H3(λ, 0) = 1]
∣∣± negl(λ) (3.7)

Combining Inequalities (3.6) and (3.7) proves Inequality (3.1), which finishes the proof for
hiding property of Protocol 3.4.1.

In the following, we finish this part by presenting the proof for Claim 3.4.1.

Proof for Claim 3.4.1. First note that ∀σ ∈ {0, 1}, H3(λ, σ) does not need to know
dλ,1−g, the decommitment information for cλ,1−g = Com(η ⊕ σ). That is because once the

query b of SR̂
∗

or the value chλ equals 1 − g, the hybrid H3 will simply abort. There-
fore, if Inequality (3.6) does not hold, we can build a PPT machine Dcom that breaks the
computationally-hiding property of Com. The distinguisher Dcom runs H3 but define cλ,1−g
in the following way:

– It forwards two values m0 := η ⊕ 0 and m1 := η ⊕ 1 to the outsider challenger for the
hiding game of Com.

– Once it receives the commitment c∗ from the challenger, it sets cλ,1−g = c∗.

Upon the halt of H3, Dcom outputs whatever H3 outputs. From the above description, it
is easy to see that if the outside challenger commits to m0, the view of R∗ is identical to
that in H3(λ, 0); if the outside challenger commits to m0, the view of R∗ is identical to that
in H3(λ, 1). Therefore, if Inequality (3.6) does not hold, Dcom breaks the computationally-
hiding property of Com. This finishes the proof for Claim 3.4.1.
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3.4.1.2 Straight-Line Extractability

At a high level, the extractor E works by biasing the outcome ch = r1 ⊕ r2 of the Step-5
coin-tossing, such that chi ⊕ τi = 1 for all i ∈ [n]. In this case, E learns the decommitments
to all the values {si,b}i∈[λ],b∈{0,1} at the end of Commit Phase, thus being able to extract
σ.

Extractor E works as follows:

1. E invokes C∗ and interacts with it using the honest receiver strategy up to the beginning
of Step 5.

2. In Step 5, E acts as follows:

(a) E runs the VSS Commit Phase of Protocol 3.3.1 to generate cr1 = VSSCom(0λ). R
sends cr1 .

(b) E receives from C∗ the value r2.

(c) E sends to C∗ the value r1 := r2 ⊕ (τ 1‖ . . . ‖τλ), where τ i = 1⊕ τi for i ∈ [λ].

(d) E invokes the (straight-line) simulator of Protocol 3.3.1, with the residual C∗ as the
verifier, for the (false) statement that cr1 is a VSSCom commitment to the value r1.

Note that the output of this (biased) coin-tossing is ch = r1⊕r2, which equals τ 1‖ . . . ‖τλ.
3. E receives from C∗ the values {di,chi}. It aborts if any of these decommitments are invalid;

otherwise, it outputs σ = ⊕i,bsi,b. Note that if it does not abort, E learns all the {si,b}
values. Because it learns {si,τi}i∈[λ] from the OT executions in Step 3 and 4; it also learns
{si,τ i}i∈[λ] from the Step-6 decommitments.

4. Output: E outputs C∗’s view of the above execution along with σ.

From the above description, it is clear that E runs in expected polynomial-time, because
the simulator of Protocol 3.3.1 runs in expected polynomial time and all the remaining steps
run in polynomial time. Also, if C∗ does not abort, E will be able to extract the value σ. In
the following, we show that C∗’s behavior (actually its view) will not change (up to negligible
probability) between the real execution and its interaction with E .

We now show that the view output by E is computationally indistinguishable from C∗’s
view in a real execution through the following sequence of hybrids:

– Hybrid H0: This hybrid runs the real execution 〈C∗, R〉 between the (malicious) com-
mitter C∗ and the honest receiver R. At the end of the execution, H1 outputs the view of
C∗.

– Hybrid H1: this hybrid is identical to the H0 except that the zero-knowledge argument
verified by C∗ in Step 5-(d) is replaced by a simulated one using the simulator of Proto-
col 3.3.1.

– Hybrid H2: this hybrid is identical to H1 except that the commitment received by C∗ in
Step 5-(a) is to 0λ rather than to a random string r1;

– Hybrid H3: this hybrid is identical to H2 except that the value r1 in Step 5-(c) is set to
r1 := r2⊕ (τ 1‖ . . . ‖τλ), where τ i = 1⊕ τi. (Note that the output of this hybrid is identical
to the view of C∗ output by E).
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The computational indistinguishability between (the output of) H0 and H1 can be estab-
lished by the ZK property of the proof stage of Protocol 3.3.1. The computational indistin-
guishability between H1 and H2 can be established by the hiding property of the committing
stage of Protocol 3.3.1 (simply by forwarding the commitment on which these two hybrids
differ to an outside challenger for the hiding property of VSSCom).

The computational indistinguishability between H2 and H3 can be established by stan-
dard hybrid arguments. More specifically, we consider the following intermediate hybrids:

– Hybrids H i
3 (i ∈ [λ]): this hybrid is identical to H3 except that the value r1 in Step

5-(c) is set to r1 := r2 ⊕ (τ 1‖ . . . ‖τ i‖ui+1‖ . . . ‖uλ), where τ j = 1 ⊕ τj (j ∈ [i]) and uk
(k ∈ {i+ 1, . . . , λ}) is a random bit sampled independently.

Note that Hλ
3 is identical to H3. We additional define H0

3 := H2. Then the computational
indistinguishability between H i−1

3 and H i
3 (∀i ∈ [n]) follows from the security of OT against

malicious senders. Concretely, the i-th OT execution is forwarded between C∗ and an ex-
ternal OT challenger. If the view of C∗ between H i−1

3 and H i
3 changes in a non-negligible

way, the hybrid constitutes a PPT machine that tells the secret input of the challenger non-

negligibly better than random guess. Thus, we have H0
c
≈ H1

c
≈ H2

c
≈ H3, which finishes

the proof of extractability.
This finishes the proof of Theorem 3.4.1.

Remark 3.4.1 (Committing to Strings). One obvious approach to extend Protocol 3.4.1 to
support multi-bit strings is to commit to each bit independently in parallel. A more efficient
way is to replace the single-bit commitments in Step 2 and OTs in Step 3 and 4 with their
multi-bit version. It is straightforward to see that same proof for correctness and security
holds for this the multi-bit version.

3.5 Our Bounded-Concurrent OT Protocol

In this section, we prove the following theorem.

Theorem 3.5.1. Assume the existence of constant-round semi-honest oblivious transfer pro-
tocols and collision-resistant hash functions. Let FOT be the ideal oblivious transfer function-
ality (Figure 3.5.1). Then, for every polynomial m, there exists a constant-round protocol
that securely computes FOT under m-bounded concurrent composition, and it uses the un-
derlying primitives in the black-box way.

Figure 3.5.1: The Oblivious Transfer Functionality FOT .

The ideal OT functionality FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, v0, v1) from S, where each vi ∈ {0, 1}n, store
(v0, v1).

– Upon receiving a message (sid, receiver, u) from R, where u ∈ {0, 1}, check if a
(sid, sender, . . .) message was previously sent. If yes, send (sid, vu) to R and (sid) to
the adversary Sim and halt. If not, send nothing to R.
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At a high-level, we obtain the OT claimed in Theorem 3.5.1 by replacing the statistically-
binding commitment Com in the OT of [GKP18] (denoted as GKP-OT) with a new com-
mitment based on Protocol 3.4.1. In the following, we will first describe the intuition behind
our construction in Section 3.5.1, and then present our protocol in Section 3.5.2.

3.5.1 The High-Level Idea

As mentioned in the technical overview (Section 3.1.1), we want to employ the same simu-
lation technique for GKP-OT, but with an (efficient) alternative way in which the simulator
can “extract” the value committed in Com. Let us first recall the (only) two places where
Com is used in GKP-OT:

1. In the very beginning (Stage 1), S (resp. R) uses Com to commit to a random set ΓS
(resp. ΓR), which is used later for cut-and-chose.

2. Next, S (resp. R) uses Com to commit to a random string aS (resp. aR) in the (Stage-2)
coin tossing, which will later be used as inputs to the parallel execution of several random
OT instances (which are in turned used for an OT-combiner stage later).

Since we now have the straight-line extractable commitment (Protocol 3.4.1) at our disposal,
we may replace Com with Protocol 3.4.1. We notice that the GKP simulator Simot can be
extended to our setting by substituting the brute-forcing with the extractor for Protocol 3.4.1
extractor. However, this method requires us to insert many intermediate hybrids in carefully-
chosen places as we need to ensure that the extractions happen in time, while not disturbing
the adjacent hybrids. We thus take the following alternative approach.

Our Approach. We add a new step (called Stage 0) in the beginning of GKP-OT, where
S (resp. R) commits using Protocol 3.4.1 to two random strings φS and ψS (resp. φR

and ψR) of proper length. We then continue identically as in GKP-OT with the following
modifications:

– In Stage 1, when S (resp. R) needs to commit to ΓS (resp. ΓR), he simply sends φS ⊕ ΓS
(resp. φR ⊕ ΓR);

– In Stage 2, when S (resp. R) needs to commit to aS (resp. aR), he simply sends ψS ⊕aS
(resp. ψR ⊕ aR).

Intuitively, we ask both parties commit to random strings which will later be used as one-time
pads to “mask” the values they committed to by Com in the original GKP-OT. The hiding
of ΓS and aS follows straightforwardly. To allow the simulator to extract them efficiently, it
is sufficient to let Simot use the extractor of Protocol 3.4.1 to extract φS and ψS. This can
be done based on two important properties of the extractor for Protocol 3.4.1:

1. Straight-line Extraction: this guarantees that Simot can finish the extraction effi-
ciently, free of the exponential-time problem due to recursive rewinding (similar as that
for concurrent zero-knowledges [DNS98]).

2. Robustness: since Protocol 3.4.1 is based on the `-robust ZK (Section 3.3), its extractor
inherits the `-robustness. By setting the parameter ` carefully, we make sure that the
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simulator can switch from honest receiver’s strategy to the extractor’s strategy session by
session, even in the presence of (bounded-ly) many other sessions.

Since we put the commitments to those masks in the very beginning, all the extractions
can be done before further hybrids are defined. Similar arguments also apply when the
receiver is corrupted. Therefore, we can make use of the GKP technique in a modular way
to finish the proof of Theorem 3.5.1.

3.5.2 Protocol Description

Our protocol makes use of the following building blocks:

– The robust-extractable commitment scheme defined in Protocol 3.4.1, to which we refer
as RobCom. Note that the commitment protocol is based only on CRHFs and semi-honest
OTs in a black-box manner.

– A four-round statistically-binding extractable commitment ExtCom, which can be con-
structed from one-way functions in the black-box way [Nao91, HILL99b, PW09].

– A O(1)-round OT protocol mS-OT that is secure against malicious senders and semi-
honest receivers.8 As shown in [HIK+11], such a OT protocol can be obtained from any
semi-honest one in the black-box way.

– A O(1)-round parallel non-malleable commitment NMCom that is parallel k-robust for
sufficiently large constant k. (Concretely, we require that k is larger than the round
complexity of the above three building blocks.) Such a non-malleable commitment scheme
can be constructed from CRHFs in the black-box way [GKP18].

Our OT protocol ΠOT is described below. As explained in Section 3.1.1, (1) our protocol is
based on the OT protocol of [GKP18], which roughly consists of coin-tossing, semi-honest
OT, OT combiner, and cut-and-choose, and relies on non-malleable commitments to make
sure adversary cannot setup the “trapdoor statement” to be true even in the bounded-
concurrent setting; and (2) our protocol additionally uses a black-box “commit-and-prove”
protocol that is `-robust-ZK for a suitably large ` to commit a string and later prove in zero-
knowledge that the opened value is indeed what was committed. Below, we give intuitive
explanations in italic.

Parameters: The security parameter is n, and the bounded-concurrent composition pa-
rameter is m := m(n).

Inputs: The input to the sender S is v0, v1 ∈ {0, 1}n.The input to the receiver R is u ∈
{0, 1}. The identities of S and R are idS, idR respectively.

Stage 0: (Extractable Commitments to Randomness)

1. Commitments to S’s randomness.

8We only requires mS-OT to be secure under a game-based definition (which is preserved under parallel
composition). For details, see the the proofs of Lemma 3.7.6 and Claim 3.7.6.
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(a) S samples independently two random strings φS and ψS = ψS1 ‖ . . . ‖ψS11n of proper
length (see the comment at the end of this stage).

(b) S and R involve in 11n + 1 executions of RobCom in parallel, where S commits
to φS and ψS1 , . . . , ψ

S
11n respectively.

Note that for the ZK argument in Step 5d of Protocol 3.4.1, we set the robustness
parameter to be `(n) = m · νot(n) where νot is defined towards the end. This
Proof Phase includes the long message of Protocol 3.3.1. We call this message
receiver’s long message. (Note that although the sender commits in this step,
the long message actually flows from the receiver to the sender. Thus, it is called
the receiver’s long message.)

2. Commitments to R’s randomness.

(a) R samples independently two random strings φR and ψR = ψR1 ‖ . . . ‖ψR11n of
proper length (see the comment at the end of this stage).

(b) S and R involve in 11n+ 1 executions of RobCom in parallel, where R commits
to φR and ψR1 , . . . , ‖ψR11n respectively.

Note that for the ZK argument in Step 5d of Protocol 3.4.1, we set the robustness
parameter to be `(n) = m ·νot(n) where νot is defined towards the end. This Proof
Phase includes the long message of Protocol 3.3.1. We call this message sender’s
long message.

Comment: In step 1 of this Stage, φS will be used in Stage 1-1 as a One-Time Pad
to “mask” the sender’s secrete ΓS (which in turn is used as the sender’s challenge for
cut-and-choose). Similarly, ψS will be used in Stage 2-1 to mask the sender’s secrete
aS.
Step 2 is just the symmetric execution of the same protocol where S and R exchange
their role.

Stage 1: (Preprocess for cut-and-choose)

1. S samples a random subset ΓS := {γS1 , ..., γSn} ⊂ [11n] of size n.9 It then sends to R
the value ΓS ⊕ φS, i.e. the bit representation of ΓS masked by the string φS using
exclusive-or.

2. R samples a random subset ΓR := {γR1 , ..., γRn } ⊂ [11n] of size n. It then sends to S
the value ΓR ⊕ φR.

Comment: As in the OT protocols of [LP12, GKP18], the subsets to for the cut-and-
choose stages are committed in advance to prevent selective opening attacks.

Stage 2: (Coin-tossing for sub-protocols)

1. (Coin tossing for S) S samples random strings aS = (aS1 , . . . , a
S
11n). It then sends

to R the values zSi := aSi ⊕ ψSi for each i ∈ [11n]. Let dSi be the decommitments
w.r.t. the Stage-0-1 RobCom of φSi . R then sends random strings bS = (bS1 , . . . , b

S
11n)

9Note that ΓS can be represented using a bit-string of length 11n.

49



to S. S then defines rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and

parses rSi as si,0 ‖si,1 ‖τSi for each i ∈ [11n].

2. (Coin tossing for R) R samples random strings aR = (aR1 , . . . , a
R
11n). It then sends

to S the values zRi := aRi ⊕ ψRi for each i ∈ [11n]. Let dRi be the decommitments
w.r.t. the Stage-0-2 RobCom of φRi . S then sends random strings bR = (bR1 , . . . , b

R
11n)

to R. R then defines rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n] and

parses rRi as ci ‖τRi for each i ∈ [11n].

Stage 3: (mS-OTs with random inputs)

S and R execute 11n instances of mS-OT in parallel. In the i-th instance, S uses
(si,0, si,1) as the input and τSi as the randomness, and R uses ci as the input and τRi
as the randomness, where {si,0, si,1, τSi }i and {ci, τRi }i are the random coins that were
obtained in Stage 2. The output to R is denoted by s̃1, . . . , s̃11n, which are supposed
to be equal to s1,c1 , . . . , s11n,c11n .

Stage 4: (NMCom and ExtCom for checking honesty of R)

1. R commits to (aR1 , d
R
1 ), . . . (aR11n, d

R
11n) using NMCom and identity idR. Let eR1 , . . . , e

R
11n

be the decommitments.

2. R commits to (aR1 , d
R
1 , e

R
1 ), . . . (aR11n, d

R
11n, e

R
11n) using ExtCom.

Comment: Roughly, the commitments in this stage, along with the cut-and-choose in
the next stage, will be used in the security proof to argue that even cheating R must
behave honestly in most instances of mS-OT in Stage 3. A key point is that given
the values that are committed to in NMCom or ExtCom in this stage, one can obtain
the random coins that R obtained in Stage 2 and thus can check whether R behaved
honestly in Stage 3.

Stage 5: (Cut-and-choose against R)

1. S reveals ΓS by sending φS and the decommitment information w.r.t. Stage-0-1
RobCom of φS.

2. For every i ∈ ΓS, R reveals (aRi , d
R
i , e

R
i ) by decommitting the i-th ExtCom commit-

ment in Stage 4.

3. For every i ∈ ΓS, S checks the following.

(a) ((aRi , d
R
i ), eRi ) is a valid decommitment of the i-th NMCom commitment in Stage

4.
(b) dRi is a valid decommitment of ψRi w.r.t. Stage-0-1 RobCom, and aRi ⊕ψRi equals

the value zRi it received in Stage-2-1.
(c) R executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi , which is obtained

from rRi = aRi ⊕ bRi as specified by the protocol.

Comment: In other words, for each index that it randomly selected in Stage 1, S
checks whether R behaved honestly in Stages 3 and 4 on that index.
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Stage 6: (OT combiner) Let ∆ := [11n] \ ΓS.

1. R sends αi := u⊕ ci to S for every i ∈ ∆.

2. S computes a (6n + 1)-out-of-10n secret sharing of v0, denoted by ρ0 = (ρ0,i)i∈∆,
and computes a (6n+ 1)-out-of-10n secret sharing of v1, denoted by ρ1 = (ρ1,i)i∈∆.
Then, S sends βb,i := ρb,i ⊕ si,b⊕αi to R for every i ∈ ∆, b ∈ {0, 1}.

3. R computes ρ̃i := βu,i ⊕ s̃i for every i ∈ ∆. Let ρ̃ := (ρ̃i)i∈∆.

Comment: In this stage, S and R execute OT with their true inputs by using the
outputs of mS-OT in Stage 3. Roughly speaking, this stage is secure as long as most
instances of mS-OT in Stage 3 are correctly executed.

Stage 7: (NMCom and ExtCom for checking honesty of S)

1. S commits to (aS1 , d
S
1 ), . . . (aS11n, d

S
11n) using NMCom and identity idS. Let eS1 , . . . , e

S
11n

be the decommitments.

2. S commits to (aS1 , d
S
1 , e

S
1 ), . . . (aS11n, d

S
11n, e

S
11n) using ExtCom.

Stage 8: (Cut-and-choose against S)

1. R reveals ΓR by sending φR and the decommitment information w.r.t. Stage-0-2
RobCom of φR.

2. For every i ∈ ΓR, S reveals (aSi , d
S
i , e

S
i ) by decommitting the i-th ExtCom commit-

ment in Stage 7.

3. For every i ∈ ΓR, R checks the following.

(a) ((aSi , d
S
i ), eSi ) is a valid decommitment of the i-th NMCom commitment in Stage

7.
(b) dSi is a valid decommitment of ψSi w.r.t. Stage-0-2 RobCom, and aSi ⊕ ψSi equals

the value zSi it received in Stage-2-2.
(c) S executed the i-th mS-OT in Stage 3 honestly using si,0 ‖ si,1 ‖ τSi , which is

obtained from rSi = aSi ⊕ bSi as specified by the protocol.

Parameter ν
OT

: All messages of this OT protocol except the sender’s and receiver’s long
messages are called short messages. Then, νot(n) denotes the total length of all
short messages of this protocol.

Output: R outputs Value(ρ̃,ΓR∩∆), where Value(·, ·) is the function that is defined in Fig.
3.5.2.

Comment: As in the OT protocols of [LP12, GKP18], a carefully designed reconstruc-
tion procedure Value(·, ·) is used here so that the simulator can extract correct implicit
inputs from cheating S by obtaining sharing that is sufficiently “close” to ρ̃.
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Figure 3.5.2: The function Value(·, ·).

Reconstruction Procedure Value(·, ·): For a sharing s = (si)i∈∆ and a set Θ ⊂ ∆,
the output of Value(s,Θ) is computed as follows. If s is 0.9-close to a valid codeword
w = (wi)i∈∆ that satisfies si = wi for every i ∈ Θ, then Value(s,Θ) is the value decoded
from w; otherwise, Value(s,Θ) = ⊥.

3.5.3 Security Proof

The security proof for our OT protocol is similar to that of [GKP18], except that we sub-
stitute the “brute-force” extraction of the simulator with polynomial-time straight-line ex-
tractions to learn the adversary’s secrets. As mentioned in the technical overview part, our
modification does not introduce new malleability issues, and the session-by-session substitu-
tion in the hybrids of [GKP18] will still apply (with careful modification). We give the full
security proof in Section 3.7.

3.6 Our Bounded-Concurrent MPC Protocol

In this section, we prove the following theorem.

Theorem 3.6.1. Assume the existence of constant-round semi-honest oblivious transfer pro-
tocols and collision-resistant hash functions. Let F be any well-formed functionality. Then,
for every polynomial m, there exists a constant-round protocol that securely computes F un-
der m-bounded concurrent composition; furthermore, it uses the underlying primitives in the
black-box way.

The protocol and the proofs are identical to those in [GKP18] except that we use the
bounded-concurrent secure OT protocol described in previous section. We now provide more
details. We focus on the two-party case below (the MPC case is analogous).

Protocol Description. Roughly speaking, we obtain our bounded-concurrent 2PC protocol
by composing our bounded-concurrent OT protocol in Section 3.5 with a UC-secure OT-
hybrid 2PC protocol. Concretely, let ΠOT be our `-bounded-concurrent OT protocol in
Section 3.5, and ΠFOT

2PC be a UC-secure OT-hybrid 2PC protocol with the following property:
The two parties use the OT functionality FOT only at the beginning of the protocol, and
they send only randomly chosen inputs to FOT . Then, we obtain our bounded-concurrent
2PC protocol Π2PC by replacing each invocation of FOT in ΠFOT

2PC with an execution of ΠOT

(i.e. , the two parties execute ΠOT instead of calling to FOT ), where all the executions of ΠOT

are carried out in a synchronous manner, i.e. , in a manner that the first message of all the
executions are sent before the second message of any execution is sent etc.; furthermore, the
bounded-concurrency parameter for ΠOT is set to be m′ defined as follows: let ν

2PC
denote

the length of all messages of the hybrid 2PC protocol ΠFOT
2PC protocol (which does not include

the length of messages corresponding to OT calls since we are in the hybrid model). Then,
we set m′ so that the length ` of long messages of ΠOT would be n bits longer than ν

OT
+ν

2PC
.

This can be ensured by setting m′ = a ·m where a is the smallest integer that is bigger than
max(ν

OT
/ν

2PC
, ν

2PC
/ν

OT
).

52



As the UC-secure OT-hybrid 2PC protocol, we use the constant-round 2PC (actually,
MPC) protocol of Ishai et al. [IPS08], which makes only black-box use of pseudorandom
generators (which in turn can be obtained in the black-box way from any semi-honest OT
protocol). (The protocol of Ishai et al. [IPS08] itself does not satisfy the above property, but
as shown in [GKP18], it can be easily modified to satisfy it.) Since the OT-hybrid protocol
of Ishai et al. [IPS08] (as well as its modification in [GKP18]) is a black-box construction
and has only constant number of rounds, our protocol Π2PC is also a black-box construction
and has only constant number of rounds.

The security of this protocol can be proved in a similar way as our OT protocol. The
formal proof is given in Section 3.8.

3.7 Security Proof For Our OT Protocol

3.7.1 Simulator Simot

To prove the security of ΠOT, we consider the following simulator Simot. Recall that our goal
is to prove that ΠOT securely realizes FOT (see Figure 3.5.1) under m-bounded concurrent
(self) composition. We therefore consider a simulator that works against adversaries that
participate in at most (and w.l.o.g., exactly) m sessions of ΠOT both as senders and as
receivers.

Let A be any adversary that participates in m sessions of ΠOT. Our simulator Simot

internally invokes A and simulates each of the sessions for A as follows.

When R is corrupted: In a session where the receiver R is corrupted, Simot simulates the
sender S for A by extracting the implicit input u∗ ∈ {0, 1} from A. During the simulation,
Simot extracts the values φR and ψR (in straight-line, using the code of A) such that it can
later extract the value ΓR and aR in Stages 1 and 2 ; the former extraction is needed to
execute most instances mS-OT in Stage 3 with true randomness (which is crucial to use their
security in the analysis), and the latter extraction is needed to infer what information A
obtained in the mS-OT instances in Stage 3 (which is crucial to extract the implicit input
u∗ ∈ {0, 1} from A).

Concretely, Simot simulates all steps of Stage 0 in the same way as an honest S, except
that in Stage 0-2, Simot uses the strategy of the (straight-line) extractor for Protocol 3.4.1
in its interaction with A. At the end of this Stage 0-2, it learns the value φR and ψR =
ψR1 ‖ . . . ‖ψR11n committed by A.

Remark 3.7.1. Note that Simot can extract ΓR using φR in Stage 1-2. Likewise, in Stage
2-2 it can extract aR using relevant parts of ψR.

Next, from Stage 1 to Stage 5, Simot interacts with A in the same way as an honest S
except for the following.

– For the commitments from A in Stages 1-2 and 2-2, the committed subset ΓR and the com-
mitted strings aR = (aR1 , . . . , a

R
11n) are extracted by Simot as described in Remark 3.7.1.

Simot then defines rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi

as ci ‖ τRi for each i ∈ [11n]. (Notice that rR is the outcome of the coin-tossing that A
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must have obtained.)

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather
than with (si,0, si,1) and τSi for every i 6∈ ΓR.

In Stage 6, Simot interacts with A as follows.

1. Receive {αi}i∈∆ from A in Stage 6-1.

2. Determine the implicit input u∗ of A as follows. Let I0, I1 be the sets such that for
b ∈ {0, 1} and i ∈ ∆, we have i ∈ Ib if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the
input and randomness.

Abort the simulation if both of |I0| ≥ 6n + 1 and |I1| ≥ 6n + 1 hold. Otherwise, define

u∗ by u∗
def
= 0 if |I0| ≥ 6n + 1 and u∗

def
= 1 otherwise. (Roughly, |Ib| is the number of

strings that A can obtain out of {si,b⊕αi}i∈∆ by requiring S to reveal them in Stage 8, by
cheating in mS-OT, or by executing mS-OT honestly with input b ⊕ αi. We remind the
readers that {si,b⊕αi}i∈∆ are the strings that are used to mask ρb = (ρb,i)i∈∆ in Stage 6.)

3. Send u∗ to the ideal functionality and obtains v∗.

4. Subsequently, interact with A in the same way as an honest S assuming that the inputs
to S are vu∗ = v∗ and random v1−u∗ .

From Stage 7 to Stage 8, Simot interacts with A in the same way as an honest S except that
in Stage 7, an all-zero string is committed in the i-th NMCom rather than (aSi , d

S
i ) for every

i 6∈ ΓR, and an all-zero string is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i ) for

every i 6∈ ΓR.

When S is corrupted: In a session where the sender S is corrupted, Simot simulates the
receiver R for A by extracting the implicit input v∗0, v

∗
1 from A. During the simulation, Simot

extracts the values φS and ψS (in straight-line, using the code of A) such that it can later
extract the value ΓS and aS in Stages 1 and 2; the former extraction is needed to execute
most instances mS-OT in Stage 3 with true randomness (which is crucial to use their security
in the analysis), and the latter extraction is needed to learn what input A used in the mS-OT
instances in Stage 3 (which is crucial to extract the implicit input v∗0, v

∗
1 from A).

Concretely, Simot simulates all steps of Stage 0 in the same way as an honest R, except
that in Stage 0-1, Simot uses the strategy of the (straight-line) extractor for Protocol 3.4.1
in its interaction with A. At the end of this Stage 0-1, it learns the value φS and ψS =
ψS1 ‖ . . . ‖ψS11n committed by A.

Remark 3.7.2. As in Remark 3.7.1, Simot can extract ΓS and aS in Stage 1-1 and Stage
2-1 respectively.

Next, Simot interacts with A in the same way as an honest R in all the stages except for
the following.
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– For the commitments from A in Stages 1-1, the committed subset ΓS is extracted by Simot

as described in Remark 3.7.2.

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather
than with ci and τRi for every i 6∈ ΓS.

– In Stage 4, an all-zero string is committed in the i-th NMCom rather than (aSi , d
S
i ) for every

i 6∈ ΓS, and an all-zero string is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i ) for

every i 6∈ ΓS.

– In Stage 6, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆, and ρ̃i is not
computed for any i ∈ ∆.

Then, Simot determines the implicit inputs v∗0, v
∗
1 of A as follows.

1. For the commitments from A in Stage 2-1, the committed strings aS = (aS1 , . . . , a
S
11n) are

extracted by Simot as described in Remark 3.7.2.

2. Define rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and parse rSi as si,0 ‖si,1 ‖τSi

for each i ∈ [11n]. (Notice that rS is the outcome of the coin-tossing that A must have
obtained.)

3. Define ρext
b = (ρextb,i )i∈∆ for each b ∈ {0, 1} as follows: ρextb,i

def
= βb,i ⊕ si,b⊕αi if A executed

the i-th mS-OT in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i
def
= ⊥ otherwise.

4. For each b ∈ {0, 1}, define v∗b
def
= Value(ρext

b ,ΓR ∩∆).

Then, Simot sends v∗0, v
∗
1 to the ideal functionality if both of the following hold for each

b ∈ {0, 1}:
1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρext
b is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every
i ∈ ΓR or 0.14-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), Simot

aborts the simulation.

3.7.2 Proof of Indistinguishability

We show the indistinguishability by using a hybrid argument. Before defining hybrid experi-
ments, we define special messages, which we use in the definitions of the hybrid experiments.
(Essentially, they are the messages on extracted by the simulator in straight-line using the
code of A.)

– first special message is the message sent by S in Stage 1-1 (which is supposed to be ΓS⊕φS).

– second special message is the message sent by R in Stage 1-2 (which is supposed to be
ΓR ⊕ φR).

– third special message is the message sent by S in Stage 2-1 (which is supposed to be
{zSi }i∈[11n]).
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– fourth special message is the message sent by R in Stage 2-2 (which is supposed to be
{zRi }i∈[11n]).

3.7.2.1 Hybrid experiments

Now, we define hybrid experiments. Let m be the bound on the number of the sessions that
A starts. Note that the number of special messages among m sessions can be bounded by
4m. We order those 4m special messages by the order of their appearances; we use SMk to
denote the k-th special message, and s(k) to denote the session that SMk belongs to.

We start by defining hybrids H0, H∗0 and Hk:1, . . . , Hk:7 for k ∈ [4m].( For convenience,
in what follows we occasionally denote H∗0 as H0:7.)

Remark 3.7.3 (Rough idea of the hybrids). In the sequence of the hybrid experiments, we
gradually modify the real-world experiment to the ideal-world one. We make sure that Hk:i

(i ∈ [7]) deviates from the previous hybrid only after SMk. These properties help us prove the
indistinguishability of each neighboring hybrids by using the extracted commitment as non-
uniform advice and rely on the non-uniform security of the underlying primitives to prove
indistinguishability.10

Hybrid H0. H0 is the same as the real experiment.

Hybrid H∗0 . Recall that Stage 0-1 (resp. Stage 0-2) contains 11n+ 1 (independent) parallel
executions of RobCom (Protocol 3.4.1), where S (resp. R) commits to φS, ψS1 , . . . , ψ

S
11n (resp.

φR, ψR1 , . . . , ψ
R
11n). Hybrid H∗0 is identical to H0 except that for each session i ∈ [m]

– if S is corrupted, Simot uses the (straight-line) extractor’s strategy of Protocol 3.4.1 in all
the 11n+ 1 RobCom executions in Stage 0-1b;

– if R is corrupted, Simot uses the (straight-line) extractor’s strategy of Protocol 3.4.1 in
all the 11n+ 1 RobCom executions in Stage 0-2b.

Note that in hybrid H∗0 , Simot extracts all the values φS, ψS1 , ‖ . . . , ψS11n for each session
i ∈ [m] where S is corrupted, and all the values φR, ψR1 , ‖ . . . , ψR11n for each session i ∈ [m]
where R is corrupted. With these values, the hybrid is able to

– (if S is corrupted) extract the values of ΓS and aS that S commits to in Stages 1-1 and
2-1 respectively, as described in Remark 3.7.2;

– (if R is corrupted) extracts the values of ΓR and aR that R commits to in Stages 1-2 and
2-2 respectively, as described in Remark 3.7.1;

For future use, these extracted values are stored in a global table T with the corresponding
session number.

Hybrid Hk:1. Hk:1 is the same as Hk−1:7 except that in session s(k), if S is corrupted and
SMk is first special message,

– Query table T to get the extracted value ΓS corresponding to session s(k),

10We remark that, unlike [GKP18], in our case it is possible to get rid of the non-uniform argument by
using (a slightly more involved) averaging argument since in our case, the extraction procedure is polynomial
time. The proof using non-uniform advice is simpler.
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– the value committed to in the i-th NMCom commitment in Stage 4 is switched to an
all-zero string for every i 6∈ ΓS,

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an
all-zero string for every i 6∈ ΓS.

Hybrid Hk:2. Hk:2 is the same as Hk:1 except that in session s(k), if S is corrupted and SMk

is first special message, the i-th mS-OT in Stage 3 is executed with a random input and true
randomness for every i 6∈ ΓS.

Hybrid Hk:3. Hk:3 is the same as Hk:2 except that in session s(k), if S is corrupted and SMk

is third special message, the following modifications are made.

1. Query table T to get the extracted value aS corresponding to session s(k). Define rS =

(rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n], and parse rSi as si,0 ‖ si,1 ‖ τSi for each

i ∈ [11n]. Define ρext
b = (ρextb,i )i∈∆ for each b ∈ {0, 1} as follows: ρextb,i

def
= βb,i ⊕ si,b⊕αi if A

executed the i-th mS-OT in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i = ⊥ otherwise.

2. R outputs Value(ρext
u ,ΓR ∩ ∆) rather than Value(ρ̃,ΓR ∩ ∆). (Recall that u is the real

input to R.) if both of the following hold for each b ∈ {0, 1}:

(a) |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

(b) ρext
b is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for

every i ∈ ΓR or 0.15-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), the
execution of the hybrid is aborted.

Hybrid Hk:4. Hk:4 is the same as Hk:3 except that in session s(k), if S is corrupted and SMk

is third special message, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆ in Stage
6-1 and ρ̃i is no longer computed for any i ∈ ∆ in Stage 6-3.

Hybrid Hk:5. Hk:5 is the same as Hk:4 except that in session s(k), if R is corrupted and
SMk is second special message,

– Query table T to get the extracted value ΓR corresponding to session s(k),

– the value committed in the i-th NMCom commitment in Stage 7 is switched to an all-zero
string for every i 6∈ ΓR,

– the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero
string for every i 6∈ ΓR.

Hybrid Hk:6. Hk:6 is the same as Hk:5 except that in session s(k), if R is corrupted and
SMk is second special message, the i-th mS-OT in Stage 3 is executed with a random input
and true randomness for every i 6∈ ΓR.

Hybrid Hk:7. Hk:7 is the same as Hk:6 except that in session s(k), if R is corrupted and
SMk is fourth special message, the following modifications are made.

1. Query table T to get the extracted value aR corresponding to session s(k). Define rR =

(rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕bRi for each i ∈ [11n], and parse rRi as ci ‖τRi for each i ∈ [11n].
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Define u∗ as follows. Let I0 and I1 be the set such that for b ∈ {0, 1} and i ∈ ∆, we have
i ∈ Ib if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the
input and randomness.

Abort the execution if both of |I0| ≥ 6n+ 1 and |I1| ≥ 6n+ 1 hold. Otherwise, define u∗

by u∗
def
= 0 if |I0| ≥ 6n+ 1 and u∗

def
= 1.

2. In Stage 6, ρ1−u∗ is a secret sharing of a random bit rather than that of v1−u∗ .

We remark that in H4m:7, all the messages from the honest parties and their output are
computed as in Simot.

3.7.2.2 Indistinguishability of each neighboring hybrids

Below, we show that each neighboring hybrids are indistinguishable, and additionally show,
for technical reasons, that an invariant condition holds in each session of every hybrid.

First, we define the invariant condition.

Definition 3.7.1 (Invariant Condition (when R is corrupted)). For any session in which R
is corrupted, we say that the invariant condition holds in that session if the following holds
when the cut-and-choose in Stage 5 is accepted.

1. Let (âR1 , d̂
R
1 ), . . . (âR11n, d̂

R
11n) be the values that are committed in NMCom in Stage 4. Let

Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âRi , d̂
R
i ) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decom-

mitment of ψRi w.r.t. Stage-0-2 RobCom, or âRi ⊕ ψRi does not equal the value zRi it
received in Stage-2-2; or

(b) R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and
randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, it holds that |Ibad| < n.

Remark 3.7.4. Roughly speaking, this condition guarantees that most of the mS-OTs in
Stage 3 are honestly executed using the outcome of the coin tossing, which in turn guarantees
that the cheating receiver’s input can be extracted by extracting the outcome of the coin
tossing.

Remark 3.7.5. When Stage 5 is accepted, we also have Ibad ∩ΓS = ∅ from the definition of
Ibad.

Definition 3.7.2 (Invariant Condition (when S is corrupted)). For any session in which S
is corrupted, we say that the invariant condition holds in that session if the following hold
when the cut-and-choose in Stage 8 is accepted.
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1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let

Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decom-

mitment of ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it
received in Stage-2-1; or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input
and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnm
b = (ρnmb,i )i∈∆ as follows: ρnmb,i

def
= βb,i ⊕ ŝi,b⊕αi if i 6∈ Ibad and

ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword

w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid
codeword.

Remark 3.7.6. Roughly speaking, this condition guarantees that the cheating sender’s input
can be extracted from the outcome of the coin tossing. In particular, it guarantees that the
sharing that is computed from the outcome of mS-OTs (i.e., the sharing that is computed by
the honest receiver) and the sharing that is computed from the outcome of the coin tossing
(i.e., the sharing that is computed by the simulator) are very “close” (see Claim 3.7.4 below).

Remark 3.7.7. When Stage 8 is accepted, we also have Ibad ∩ ΓR = ∅ from the definition
of Ibad.

Next, we show that the invariant condition holds in every session in H0 (i.e., the real
experiment).

Definition 3.7.3. We say that A cheats in a session if the invariant condition does not
hold in that session.

Next, we establish the computational indistinguishability among hybrids by a sequence
of lemmata. We start with the following lemma:

Lemma 3.7.1. In H0, A does not cheat in every session except with negligible probability.

Proof. The proof of this lemma is identical to the proof in [GKP18]. We include it here for
completeness.

Assume for contradiction that in H0, A cheats in a session with non-negligible probability.
Since the number of the sessions is bounded by a polynomial, there exists a function i∗(·)
and a polynomial p(·) such that for infinitely many n, A cheats in the i∗(n)-th session with
probability at least 1/p(n); furthermore, since A cheats only when either R or S is corrupted,
in the i∗(n)-th session either R is corrupted for infinitely many such n or S is corrupted for
infinitely many such n. In both cases, we derive contradiction by using A to break the hiding
property of RobCom.

Case 1. R is corrupted in the i∗(n)-th session. We show that when A cheats, we can
break the hiding property of the RobCom(φS) commitment in Stage 0-1 (i.e. , the commit-
ment by which φS is committed to). From the definition of the invariant condition (Defini-
tion 3.7.1), when A cheats, we have |Ibad| ≥ n even though the cut-and-choose in Stage 5
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is accepting (and hence Ibad ∩ ΓS = ∅ as remarked in Remark 3.7.5), where Ibad ⊆ [11n] is
the set defined from the committed values of the NMCom commitments in Stage 4. If we
can compute Ibad efficiently, we can use it to distinguish ΓS from a random subset of size
n (this is because a random subset Γ of size n satisfies Ibad ∩ Γ = ∅ only with negligible
probability when |Ibad| ≥ n), so we can use it to break the hiding property of the RobCom
commitment to φS, which is used to mask ΓS. However, Ibad is not efficiently computable
since the committed values of the NMCom commitments are not efficiently computable. We
thus first show that we can “approximate” Ibad by extracting the committed values of the
ExtCom commitments in Stage 4. Details are given below.

First, we observe that if we extract the committed values of the ExtCom commitments in
Stage 4 of the i∗(n)-th session, the extracted values (âR1 , d̂

R
1 , ê

R
1 ), . . . , (âR11n, d̂

R
11n, ê

R
11n), satisfy

the following condition.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âRi , d̂
R
i ), êRi ) is not a valid decommitment of the i-th NMCom commitment in Stage 4;

or

2. (âRi , d̂
R
i ) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decom-

mitment of ψRi w.r.t. Stage-0-2 RobCom, or âRi ⊕ ψRi does not equal the value zRi it
received in Stage-2-2; or

3. R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and
randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, |Îbad| ≥ n and Îbad ∩ ΓS = ∅ with probability at least 1/2p(n).

The extracted values satisfy this condition because when A cheats, we have |Îbad| ≥ n and
Îbad∩ΓS = ∅ except with negligible probability. (We have |Îbad| ≥ n since we have Ibad ⊂ Îbad

from the definitions of Ibad, Îbad and the binding property of NMCom. We have Îbad∩ΓS = ∅
since when the cut-and-choose in Stage 5 is accepting, for every i ∈ ΓS the i-th ExtCom
commitment is a valid decommitment of the i-th NMCom commitment, and Ibad ∩ ΓS = ∅.)

Based on this observation, we derive contradiction by considering the following adversary
ARobCom against the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
S or φ1

S is committed.
Then, ARobCom internally executes the experiment H0 honestly except that in the
i∗(n)-th session, ARobCom uses c∗ as the commitment in Stage 0-1 (i.e. , as the
RobCom commitment in which S commits to string which will be used to mask ΓS
in Stage 1-1). In Stage 1-1, ARobCom always use φ1

S to mask ΓS. When the exper-
iment H0 reaches Stage 4 of the i∗(n)-th session, ARobCom extracts the committed
values of the ExtCom commitments in this stage by using its extractability.11 Let
Îbad ⊂ [11n] be the set that is defined as above from the extracted values. Then,
ARobCom outputs 1 if and only if |Îbad| ≥ n and Îbad ∩ ΓS = ∅.

If ARobCom receives a commitment to φ1
S, ARobCom outputs 1 with probability at least 1/2p(n)

(this follows from the above observation). In contrast, if ARobCom receives a commitment to

11This extraction involves rewinding the execution of the whole experiment, i.e. , the adversary as well as
all the other parties.
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φ0
S, ARobCom outputs 1 with exponentially small probability (this is because φS1 ⊕ΓS is a pure

random string now, so the probability that |Îbad| ≥ n but Îbad ∩ Γ1
S = ∅ is exponentially

small). Hence, ARobCom breaks the hiding property of RobCom.

Case 2. S is corrupted in the i∗(n)-th session. The proof for this case is similar to (but
a little more complex than) the one for Case 1. Specifically, we show that if the invariant
condition does not hold, we can break the hiding property of RobCom(φR) in Stage 0-2 by
approximating Ibad using the extractability of ExtCom. We give a formal proof for this case
in Section 3.9.1. (A somewhat similar proof is given as the proof of Lemma 3.7.5 later.)

Next, we show the indistinguishability between each neighboring hybrids.

Lemma 3.7.2. Hybrids H0 and H∗0 are indistinguishable, and in H∗0 , A does not cheat in
every sessions except with negligible probability.

Proof. We first prove the indistinguishability by a sequence of intermediate hybrids where
the RobCom is replaced one-by-one. This relies on the robust extractability of RobCom.
Then, using the established indistinguishability and the robust non-malleability of NMCom,
we show that A does not cheat in H∗0 .

We first set Ĥ0
0 = H0. Then, we define the following sequence of m intermediate hybrids:

Hybrid Ĥ i
0 (i ∈ [m]). This hybrid is identical to Ĥ i−1

0 except that in session i,

– if S is corrupted, Simot uses the (straight-line) extractor’s strategy of Protocol 3.4.1 in all
the 11n+ 1 RobCom executions in Stage 0-1b (in session i);

– if R is corrupted, Simot uses the (straight-line) extractor’s strategy of Protocol 3.4.1 in
all the 11n+ 1 RobCom executions in Stage 0-2b (in session i);

It is easy to see that Ĥm
0 = H∗0 . Thus, to prove Lemma 3.7.2, we only need to show that

each adjacent Ĥ i
0 and Ĥ i+1

0 is indistinguishable and A does not cheat in Ĥ i
0 for all i ∈ [m].

For this purpose, we provide a proof for Ĥ0
0 (i.e. H0) and Ĥ1

0 in the following Claim 3.7.1.
The same argument extends straightforwardly to other adjacent Ĥ i

0 and Ĥ i+1
0 .

Claim 3.7.1. Hybrids Ĥ0
0 and Ĥ1

0 are indistinguishable, and in Ĥ1
0 , A does not cheat in

every sessions except with negligible probability.

Proof. Note that our OT protocol contains 11n + 1 RobCom executions in Stage 0-1b (and
in Stage 0-2b). To conduct the proof, we actually need a finer-grained sequence of hybrids,
which is listed in the following. To provide an intuitive explanation, the following hybrids
are obtained by inserting 11n + 1 hybrids between Ĥ0

0 and Ĥ1
0 , where the 11n + 1 RobCom

instances are substituted one-by-one.

Hybrid Ĥ0:i
0 (i ∈ [11n+ 1]). this hybrid is the same as Ĥ0

0 except that

– if S is corrupted in session 1, Simot uses the (straight-line) extractor’s strategy of Proto-
col 3.4.1 in the first i of the 11n+ 1 RobCom executions in Stage 0-1b;

– if R is corrupted in session 1, Simot uses the (straight-line) extractor’s strategy of Proto-
col 3.4.1 in the first i of the 11n+ 1 RobCom executions in Stage 0-2b;
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It is easy to see that Ĥ0:11n+1
0 = Ĥ1

0 . To prove Claim 3.7.1, we need to show that each adjacent
Ĥ0:i

0 and Ĥ0:i+1
0 is indistinguishable and A does not cheat in Ĥ0:i

0 for all i ∈ [11n+ 1]. In the
following, we focus on the switch between Ĥ0:0

0 and Ĥ0:1
0 (the same argument extends to the

switch from Ĥ0:i−1
0 to Ĥ0:i

0 for all i ∈ [11n+ 1]). Concretely, in the following we prove that:

– Ĥ0:0
0 and Ĥ0:1

0 are indistinguishable, and A does not cheat in Ĥ0:1
0 .

Let us stress that the only difference between Ĥ0:0
0 and Ĥ0:1

0 lies in the first RobCom in Stage
0-1b of session 1 (if A corrupts S in session 1), or in Stage 0-2b of session 1 (if A corrupts
R in session 1).

Indistinguishability. First note that, in session 1, if no party is corrupted, Ĥ0:0
0 and Ĥ0:1

0 are
identical. So the statement holds trivially.

When one party is corrupted (S or R), we prove the indistinguishability based on the
robust extractability of RobCom.

The argument is actually identical to the proof of the extractability for Protocol 3.4.1
(Section 3.4.1.2), with the only difference that there are other sessions running besides the
RobCom under our consideration. To deal with this, we note that Step 5d in Protocol 3.4.1 is
instantiated with the commit-and-proof scheme shown in Protocol 3.3.1, whose Proof Phase
gives us `-robustness (as we proved in Theorem 3.3.2). In the design of our OT, we set the
robustness to be `(n) = m ·νot(n), which is large enough to encompass all the messages from
the remaining part of the execution. With this modification, the same sequence of hybrids
for the extractability of Protocol 3.4.1 also works for proving indistinguishability among
Ĥ0:0

0 to Ĥ0:1
0 . More specifically, we only need to modify the switch from H0 to H1 (where

we switch from the real prover to the robust-ZK simulator in Step 5d) in Section 3.4.1.2, by
relying additional on the `-robustness. For completeness, we provide the full proof for this
switch in the following.

Assume for contradiction that the indistinguishability does not hold due to the switch
from the real prover to the robust-ZK simulator (from H0 to H1 as mentioned above). We
can then construct a robust-ZK verifier V ∗ and a machine B, who interact with either a
prover or the simulator SZK(code[A]) and violate the robust-ZK property, as follows.

Machine B: incorporates all honest parties, including the honest party for session 1. B
performs all steps honestly for each party except the corresponding Step 5d in session
1; the messages of this phase are expected to come from an external machine (either
the prover or the simulator).

The messages of B are sent to the network which delivers them appropriately to the
cheating verifier (specified below). We note that, by definition of robust-ZK B receives
a copy of all messages that V ∗ receives.

Verifier V ∗: this algorithm is just the adversary A, with the understanding that all mes-
sages that do not belong to the corresponding Step 5d in session 1 are viewed as
external messages sent to (or received from) machine B.

Observe that B is polynomial time, and since it receives a copy of all messages sent to
V ∗ (by the prover or the simulator), it can indeed function correctly even though it runs the
simulator algorithm for the ZK-proof stage in all sessions different from session 1. (This is
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not necessary in the switch from Ĥ0
0 to Ĥ1

0 , as the only session 1 contains simulated RobCom.
But it will be important in later hybrids as more sessions contain simulated (Step 5d of)
RobCom.)

Notice that if V ∗ interacts with honest prover of the robust-ZK, then this experiment is
identical to the aforementioned H0. On the other hand, if it interacts with SZK then the
experiment is identical to the aforementioned H1;12 furthermore, since SZK receives a copy
of all messages that V ∗ receives from B, it can indeed run in polynomial time.

It follows that if the output of hybrids are not indistinguishable, we violate the robust-ZK
property.

Remark 3.7.8 (On the Bound `(n)). The above argument relies on the assumption that the
size of messages coming from B to V ∗ is bounded by `(n) (the definition of `(n)-robust ZK).
As a vigilant reader may have realized already, this is not quite true for our definition of V ∗.
More specifically, consider all the messages coming from B to V ∗. There must be one long
message for each session where V ∗ plays the role of RobCom sender (note that the other
long message in the same session comes from V ∗ to B, so we do not need to worry)13.
Recall that we set `(n) = m · νot(n). This is enough to capture all the short messages, but
not these long messages (from B to V ∗). This can be resolved in the following way. Note
that the long messages coming from B to V ∗ are nothing more than random strings. Thus,
we can extend V ∗ to incorporate the subroutine in B that samples these random strings. Let
us denote this extended adversary as Ṽ ∗. We modify the above argument by passing the code
of Ṽ ∗ to the ZK simulator. Now everything works as the size of messages flowing from B to
Ṽ ∗ is bounded by `(n).

Invariant Condition. We next show that in Ĥ0:1
0 , A does not cheat. Assume for contradiction

that A cheats in some session i∗(n) ∈ [m] with non-negligible probability. Note that the only
difference between Ĥ0:0

0 and Ĥ0:1
0 is that the adversary in session 1 sees a real proof in RobCom

of Ĥ0:0
0 , but a simulated one (from the straight-line extractor) in RobCom of Ĥ0:1

0 . Then, by
expecting this stage in session 1 from an external prover or simulator (RobCom extractor),
we can break the robust non-malleability of NMCom in session i∗(n). We elaborate on this
argument in the following.

The man-in-the-middle adversary ANMCom internally executes Ĥ0:0
0 . If S (resp.

R) is corrupted in session 1, then in Stage 0-1b (resp. Stage 0-2b ) of session 1,
ANMCom forward the message between the external party, which is either the hon-
est RobCom receiver or the straihgt-line simulator. Also, in session i∗(n), ANMCom

forwards the NMCom commitments from A to the external receiver (specifically,
the NMCom commitments in Stage 4 if R is corrupted in session i∗(n), and in
Stage 7 if S is corrupted in session i∗(n)). After the execution of Ĥ0:0

0 finishes,
ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values

12We stress that the H0 and H1 here are the ones as defined in Section 3.4.1.2, but in our current context
of the concurrent OT setting. They should not be confused with other hybrids defined in this section

13More accurately, using our definition for B and V ∗, in any session, if S is corrupted, then V ∗ will
incorporate S and the receiver’s long massages flows from B to V ∗; if R is corrupted, the sender’s long
massages flows from B to V ∗.
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committed by ANMCom (which are equal to the values committed to by A in
session i∗(n) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session i∗(n). (Notice that given the committed values
of the NMCom commitments, DNMCom can check whether A cheated or not in
polynomial time.)

When the external party mentioned above is the honest RobCom receiver, the view of A is
identical to that in Ĥ0:0

0 ; whereas when the external party mentioned above is the extractor
for RobCom, the view of A is identical to that in Ĥ0:1

0 . Hence, from the assumption that A
cheats in session i∗(n) with negligible probability in Ĥ0:0

0 but with non-negligible probability
in Ĥ0:1

0 , ANMCom breaks the robust non-malleability of NMCom.
This finishes the proof for Claim 3.7.1.

This finishes the proof for Lemma 3.7.2.

From here onwards, the proof of indistinguishability of hybrids is very similar to the
proofs in [GKP18] (with minor notational changes) except that we do not require brute-
force extraction of inputs; instead they are accessed directly from table T . We provide the
proofs here for completeness.

Lemma 3.7.3. Assume that in Hk−1:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk−1:7 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. This proof for this lemma is identical to that in [GKP18], except that the hybrid uses
the table T to get the extracted values it needs, instead of extracting by brute force. We
present the full proof here for completeness.

We prove the lemma by using a hybrid argument. Specifically, we consider the following
intermediate hybrid H ′k−1:7.

Hybrid H ′k−1:7. H
′
k−1:7 is the same as Hk−1:7 except that in session s(k), if S is corrupted

and SMk is first special message,

– the committed subset ΓS is extracted by querying T in Stage 1-1, and

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an
all-zero string for every i 6∈ ΓS.

Claim 3.7.2. Assume that in Hk−1:7, A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk−1:7 and H ′k−1:7 are indistinguishable, and

– in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between Hk−1:7 and H ′k−1:7. Assume for contra-
diction that Hk−1:7 and H ′k−1:7 are distinguishable. From an average argument, we can fix
the execution of the experiment up until SMk (inclusive) in such a way that even after being
fixed, Hk−1:7 and H ′k−1:7 are still distinguishable. By considering the transcript (including
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the inputs and randomness of all the parties) up until SMk and the table T as non-uniform
advice, we can break the hiding property of ExtCom as follows.

The adversaryAExtCom internally executesHk−1:7 from SMk using the non-uniform
advice. In Stage 4 of session s(k), AExtCom sends (aRi , d

R
i , e

R
i )i 6∈ΓS and (0, 0, 0)i 6∈ΓS

to the external committer, receives back ExtCom commitments (in which either
(aRi , d

R
i , e

R
i )i 6∈ΓS or (0, 0, 0)i 6∈ΓS are committed to), and feeds them into Hk−1:7.

After the execution of Hk−1:7 finishes, AExtCom outputs whatever Z outputs in
the experiment.

When AExtCom receives commitments to (aRi , d
R
i , e

R
i )i 6∈ΓS , the internally executed experiment

is identical with Hk−1:7, whereas when AExtCom receives a commitments to (0, 0, 0)i 6∈ΓS , the
internally executed experiment is identical with H ′k−1:7. Hence, from the assumption that
Hk−1:7 and H ′k−1:7 are distinguishable (even after being fixed up until SMk), AExtCom distin-
guishes ExtCom commitments.

We next show that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m). Assume
for contradiction that in H ′k−1:7, A cheats in one of those sessions, say, session s(j), with
non-negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk−1:7 but with non-negligible probability in
H ′k−1:7.

Then, by considering the transcript up until SMk and the table T as non-uniform advice,
we can break the robust non-malleability of NMCom as follows.

The man-in-the-middle adversary ANMCom internally executes Hk−1:7 from SMk

using the non-uniform advice. In Stage 4 of session s(k),ANMCom sends (aRi , d
R
i , e

R
i )i 6∈ΓS

and (0, 0, 0)i 6∈ΓS to the external committer, receives back ExtCom commitments
(in which either (aRi , d

R
i , e

R
i )i 6∈ΓS or (0, 0, 0)i 6∈ΓS are committed to), and feeds them

into Hk−1:7. Also, in session s(j), ANMCom forwards the NMCom commitments
from A to the external receiver (specifically, the NMCom commitments in Stage
4 if R is corrupted and in Stage 7 if S is corrupted). After the execution of Hk−1:7

finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j). (Notice that given the committed values
of the NMCom commitments, DNMCom can check whether A cheated or not in
polynomial time.)

When ANMCom receives commitments to (aRi , d
R
i , e

R
i )i 6∈ΓS , the internally executed experiment

is identical with Hk−1:7, whereas when ANMCom receives a commitments to (0, 0, 0)i 6∈ΓS , the
internally executed experiment is identical with H ′k−1:7. Hence, from the assumption that A
cheats in session s(j) with negligible probability in Hk−1:7 but with non-negligible probability
in H ′k−1:7, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Claim 3.7.2.

65



Claim 3.7.3. Assume that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– H ′k−1:7 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

This claim can be proven very similarly to Claim 3.7.2 (the only difference is that we
use the hiding property of NMCom rather than that of ExtCom in the first part, and use the
non-malleability of NMCom rather than its robust non-malleability in the second part). We
thus omit the proof.

This completes the proof of Lemma 3.7.3.

Lemma 3.7.4. Assume that in Hk:1 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:1 and Hk:2 are indistinguishable, and

– in Hk:2, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are used in
some of the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin
tossing is used in Hk:1 and random inputs and true randomness are used in Hk:2. Intuitively,
we prove this lemma by using the security of the Stage-2-2 coin tossing (which is guaranteed
by the hiding property of RobCom(ψRi )’s) because it guarantees that the outcome of the coin
tossing is pseudorandom. The proof is quite similar to the proof of Claim 3.7.2 (we use the
hiding of RobCom(ψRi )’s rather than that of ExtCom), and given in Section 3.9.2.

Lemma 3.7.5. Assume that in Hk:2 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:2 and Hk:3 are indistinguishable, and

– in Hk:3, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that Hk:2 and Hk:3 differ only in that in session s(k) of Hk:3, if S is cor-
rupted and SMk is third special message, either R outputs Value(ρext

u ,ΓR ∩ ∆) rather than
Value(ρ̃,ΓR ∩∆) or the hybrid is aborted.

For proving the lemma, it suffices to show that in session s(k) of Hk:3,

1. the hybrid is not aborted except with negligible probability, and

2. if the hybrid is not aborted we have Value(ρext
u ,ΓR ∩∆) = Value(ρ̃,ΓR ∩∆)

To see that showing these two is indeed sufficient for proving the lemma, observe the follow-
ing. First, these two imply that in session s(k) of Hk:3, the probability that the hybrid is
aborted or we have Value(ρext

u ,ΓR ∩∆) = Value(ρ̃,ΓR ∩∆) is negligible, so Hk:2 and Hk:3 are
statistically close. Second, since Hk:2 and Hk:3 proceed identically until the end of session
s(k), and

1. if the experiment is not aborted in session s(k), Hk:2 and Hk:3 continue to proceed iden-
tically after the end of session s(k), and
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2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after the
end of session s(k)

the probability that A cheats in sessions s(k), ..., s(4m) is not increased in Hk:3.
Now, we first show that in session s(k) of Hk:3, the hybrid is not aborted except with

negligible probability. Since Hk:2 and Hk:3 proceed identically until the end of session s(k),
we have that in Hk:3, A does not cheat in session s(k) except with negligible probability. So,
it suffices to show that when session s(k) is accepting and A does not cheat in session s(k),
the hybrid is not aborted in session s(k). Recall that if A does not cheat in an accepting
session (in which S is corrupted), we have the following.

1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let

Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decom-

mitment of ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it
received in Stage-2-1; or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input
and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnm
b = (ρnmb,i )i∈∆ as follows: ρnmb,i

def
= βb,i ⊕ ŝi,b⊕αi if i 6∈ Ibad and

ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword

w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid
codeword.

We show that the above two imply that the hybrid is not aborted at the end of the
session, i.e. that both of the following hold for each b ∈ {0, 1}.
1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρext
b is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every
i ∈ ΓR or 0.14-far from any such valid codeword.

Fix any b ∈ {0, 1}. First, we notice that we can obtain |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n from
|Ibad| < 0.1n since we have {i ∈ ∆ s.t. ρextb,i 6= ⊥} ⊆ Ibad from the definition of ρext

b and Ibad.
Next, we observe that ρext

b is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies
wi = ρextb,i for every i ∈ ΓR or 0.14-far from any such valid codeword. From the assumption
that A does not cheat, it suffices to consider the following two cases.

Case 1. ρnm
b is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for

every i ∈ ΓR ∩ ∆: In this case, ρext
b is 0.9-close to w, and wi = ρextb,i holds for every

i ∈ ΓR. This is because for every i such that ρnmb,i = wi, we have ρnmb,i 6= ⊥ and thus we
have ρnmb,i = ρextb,i from the definition of ρnm

b .

Case 2. ρnm
b is 0.15-far from any valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i

for every i ∈ ΓR ∩∆: In this case, ρext
b is 0.14-far from any valid codeword w′ that

satisfies w′i = ρextb,i for every i ∈ ΓR ∩∆. This can be seen by observing the following:
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(1) for every i ∈ ΓR ∩ ∆, we have i 6∈ Ibad (this is because the session is accepting)
and hence ρextb,i = ρnmb,i ; (2) therefore, for any valid codeword w′ that satisfies w′i = ρextb,i
for every i ∈ ΓR ∩ ∆, we have that w′ also satisfies w′i = ρnmb,i for every i ∈ ΓR ∩ ∆;
(3) then, from the assumption of this case, ρnm

b is 0.15-far from w′; (4) now, since ρnm
b

and ρext
b are 0.99-close (this follows from |Ibad| < 0.1n), ρext

b is 0.14-far from w′.

We therefore conclude that when session s(k) is accepting and A does not cheat in session
s(k), the hybrid is not aborted in session s(k).

Next, we show that in session s(k) ofHk:3 if the hybrid is not aborted, we have Value(ρext
u ,ΓR∩

∆) = Value(ρ̃,ΓR ∩∆). To show this, it suffices to show the following two claims.

Claim 3.7.4. For any x = (xi)i∈∆,y = (yi)i∈∆ and a set Θ, we have Value(x,Θ) =
Value(y,Θ) if the following conditions hold.

1. x and y are 0.99-close, and xi = yi holds for every i ∈ Θ.

2. If xi 6= ⊥, then xi = yi.

3. x is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for every i ∈ Θ
or 0.14-far from any such valid codeword.

Claim 3.7.5. In session s(k) of Hk:3, if the sender S is corrupted, the session is accepting,
and the session is not aborted the following hold.

1. ρext
u and ρ̃ are 0.99-close, and ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

2. If ρextu,i 6= ⊥, then ρextu,i = ρ̃i.

3. ρext
u is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextu,i for every
i ∈ ΓR ∩∆ or 0.14-far from any such valid codeword.

We prove each of the claims below.

Proof of Claim 3.7.4. We consider the following two cases.

Case 1. x is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for
every i ∈ Θ: First, we observe that y is 0.9-close to w. Since w is a valid codeword,
we have wi 6= ⊥ for every i ∈ ∆; thus, for every i such that xi = wi, we have xi 6= ⊥.
Recall that from the assumed conditions, for every i such that xi 6= ⊥, we have xi = yi.
Therefore, for every i such that xi = wi, we have yi = wi, which implies that y is 0.9-
close to w.

Next, we observe thatw satisfies wi = yi for every i ∈ Θ. From the assumed conditions,
we have xi = yi for every i ∈ Θ. Also, from the condition of this case,w satisfies wi = xi
for every i ∈ Θ. From these two, we have that w satisfies wi = yi for every i ∈ Θ.

Now, from the definition of Value(·, ·), we have Value(x,Θ) = Value(y,Θ) = Decode(w).

Case 2. x is 0.14-far from any valid codeword w = (wi)i∈∆ that satisfies wi = xi
for every i ∈ Θ: For any valid codeword w′ = (w′i)i∈∆ that satisfies w′i = yi for every
i ∈ Θ, we observe that y is 0.1-far from w′. Since we assume that xi = yi holds for
every i ∈ Θ, we have w′i = xi for every i ∈ Θ. Therefore, from the assumption of this

68



case, x is 0.14-far from w′. Now, since we assume that x and y are 0.99-close, y is
0.1-far from w′.

Now, from the definition of Value(·, ·), we conclude that:

Value(x,Θ) = Value(y,Θ) = ⊥.

Notice that from the assumed conditions, either Case 1 or Case 2 is true. This concludes
the proof of Claim 3.7.4.

Proof of Claim 3.7.5. Recall that if the hybrid is not aborted in an accepting session in
which S is corrupted, we have the following for each b ∈ {0, 1} in that session.

1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρext
b is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every
i ∈ ΓR or 0.14-far from any such valid codeword.

Thus, it suffices to show that the above two imply the first condition in the claim statement.
First, we show that ρext

u and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR∩∆.
From the definition of ρext

u , we have ρextu,i = ρ̃i for every i such that ρextb,i 6= ⊥ (this is because
for every such i, A executed the i-th mS-OT in Stage 3 honestly using the coin obtained in
Stage 2-1, which implies that the value s̃i that was obtained from the i-th mS-OT is equal to
the value si,ci that was obtained by extracting the coin in Stage 2-1 by brute-force). Then,
since |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n and {i ∈ ∆ s.t. ρextb,i 6= ⊥} ∩ ΓR = ∅ (the latter holds
since the session would be rejected otherwise), we have that ρext

u and ρ̃ are 0.99-close and
that ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

Next, we show that if ρextu,i 6= ⊥ then ρextu,i = ρ̃i. From the definition of ρext
u , if ρextu,i 6= ⊥,

A executed the i-th mS-OT in Stage 3 honestly using the coin obtained in Stage 2-1, so we
have ρextu,i = ρ̃i from the argument same as above.

This concludes the proof of Claim 3.7.5.

This concludes the proof of Lemma 3.7.5.

Lemma 3.7.6. Assume that in Hk:3 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:3 and Hk:4 are indistinguishable, and

– in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted and
SMk is third special message, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆
in Stage 6-1. Intuitively, we can prove this lemma by using the security of mS-OT: For
every i 6∈ ΓS, the choice bit ci of the i-th mS-OT in Stage 3 is hidden from A and hence
αi = u⊕ ci in Hk:3 is indistinguishable from a random bit. Formally, we prove this Lemma
in the same way as we do for Claim 3.7.2 (we use the security of mS-OT rather than the
hiding of ExtCom); the proof is given in Section 3.9.3.

The next lemma is the counterpart of Lemma 3.7.3 when R is corrupted.
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Lemma 3.7.7. Assume that in Hk:4 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:4 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Note that hybrids Hk:4 and Hk:5 differ only in the values committed to in NMCom and
ExtCom for the indices outside of ΓR, in session s(k), when R is corrupted. This lemma
can be proven identically with Lemma 3.7.3. For completeness, we give a formal proof in
Section 3.9.4.

Lemma 3.7.8. Assume that in Hk:5 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:5 and Hk:6 are indistinguishable, and

– in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Since hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are used in
some of the mS-OTs in Stage 3, this lemma can be proven identically with Lemma 3.7.4
(which in turn can be proven quite similarly to Lemma 3.7.3). For completeness, we give a
formal proof in Section 3.9.5.

Lemma 3.7.9. Assume that in Hk:6 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:6 and Hk:7 are indistinguishable, and

– in Hk:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We prove the lemma by considering the following intermediate hybrids H ′k:6, H ′′k:6,
and H ′′′k:6.

Hybrid H ′k:6. H ′k:6 is the same as Hk:6 except that in session s(k), if R is corrupted and
SMk is fourth special message, the following modifications are made.

1. As in Hk:7, the committed strings aR = (aR1 , . . . , a
R
11n) are extracted by querying table T ,

rR = (rR1 , . . . , r
R
11n) is defined by rRi

def
= aRi ⊕ bRi for each i ∈ [11n], and rRi is parsed as

ci ‖τRi for each i ∈ [11n]. Also, I0, I1, and u∗ are defined as in Hk:7.

2. In Stage 6, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi for every b ∈ {0, 1} and
i ∈ ∆ \ Ib. (Recall that, roughly, Ib ⊂ ∆ is the set of indices on which A could have
obtained si,b⊕αi .)

Hybrid H ′′k:6. H ′′k:6 is the same as H ′k:6 except that in session s(k), if R is corrupted and
SMk is fourth special message, the following modification is made.

1. The execution of the hybrid is aborted if both of |I0| ≥ 6n+ 1 and |I1| ≥ 6n+ 1 holds.

2. In Stage 6, ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of
v1−u∗ .

Hybrid H ′′′k:6. H ′′′k:6 is the same as H ′′k:6 except that in session s(k), if R is corrupted and
SMk is fourth special message, the following modification is made.
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1. In Stage 6, βb,i is βb,i = ρb,i ⊕ si,b⊕αi rather than a random bit for every b ∈ {0, 1} and
i ∈ ∆ \ Ib.

Notice that H ′′′k:6 is identical with Hk:7.

Claim 3.7.6. Assume that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:6 and H ′k:6 are indistinguishable, and

– in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted and
SMk is fourth special message, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi for every
b ∈ {0, 1} and i ∈ ∆\Ib. Intuitively, we can prove this claim by using the security of mS-OT:
For every i ∈ ∆ \ Ib, A executed the i-th mS-OT honestly with choice bit (1− b)⊕ αi, and
the sender’s input and randomness of this mS-OT are not revealed in Stage 8; therefore,
the value of si,b⊕αi is hidden from A and thus βb,i = ρb,i ⊕ si,b⊕αi is indistinguishable from
a random bit. Formally, we prove this claim in the same way as we do for Claim 3.7.2 (we
use the security of mS-OT rather than the hiding of ExtCom); a formal proof is given in
Section 3.9.6.

Claim 3.7.7. Assume that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– H ′k:6 and H ′′k:6 are indistinguishable, and

– in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that hybrid H ′′k:6 differs from H ′k:6 in that in Stage 6 of session s(k), either the
hybrid is aborted or ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than
that of v1−u∗ .

For proving the lemma, it suffices to show that in session s(k) of H ′′k:6, the hybrid is not
aborted (i.e. we have |I0| ≤ 6n or |I1| ≤ 6n) except with negligible probability. To see
that showing this is indeed sufficient for proving the lemma, observe the following: First, if
the hybrid is not aborted, we have |I1−u∗ | ≤ 6n, so β1−u∗,i is a random bit on at least 4n
indices and thus ρ1−u∗,i is hidden on at least 4n indices, which implies that H ′k:6 and H ′′k:6

are statistically indistinguishable. Second, since H ′k:6 and H ′′k:6 proceed indentically until the
beginning of Stage 6-2 of session s(k), and

1. if the experiment is not aborted in session s(k), H ′k:6 and H ′′k:6 continue to proceed iden-
tically after Stage 6-2 of session s(k), and

2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after Stage
6-2 of session s(k),

the probability that A cheat in sessions s(k), ..., s(4m) is not increased in H ′′k:6.
Hence, we show that in sessoion s(k) of H ′′k:7, the hybrid is not aborted in except with

negligible probability, or equivalently, that we have |I0| ≤ 6n or |I1| ≤ 6n except with
negligible probability. Since H ′′k:7 proceeds identically with H ′k:7 until Stage 6-2 of session
s(k), we have that A does not cheat in session s(k) of H ′′k:7 except with negligible probability,
so it suffices to show that in session s(k) of H ′′k:7, we have either |I0| ≤ 6n or |I1| ≤ 6n
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whenever A does not cheat. Assume that A does not cheat in session s(k) of H ′′k:7. Then,
since |ΓR| = n and that the number of indices on which A does not execute mS-OT using
the outcome of coin-tossing is at most n, we have |I0 ∩ I1| ≤ 2n. Now, since I0, I1 ⊂ ∆ and
thus |I0 ∪ I1| ≤ |∆| = 10n, we have |I0|+ |I1| ≤ 12n, and hence, we have either |I0| ≤ 6n or
|I1| ≤ 6n.

Claim 3.7.8. Assume that in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– H ′′k:6 and H ′′′k:6 are indistinguishable, and

– in H ′′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. This claim can be proven identically with Claim 3.7.6.

This completes the proof of Lemma 3.7.9.

From Lemma 3.7.3 to Lemma 3.7.9, we conclude that the output of H0 and that of H4m:7

are indistinguishable, i.e. , the output of the real world and that of the ideal world are
indistinguishable. This concludes the proof of Theorem 3.5.1.

3.8 Security Proof for Our MPC Protocol

Simulator Sim. As in Section 3.7.1, we consider a simulator that works against any adver-
sary, say A, that participates in m sessions of Π2PC. Our simulator Sim internally invokes the
adversary A, and simulates each of the sessions by using the simulator of ΠOT (Section 3.7.1)
and that of ΠFOT

2PC as follows.

1. In each execution of ΠOT at the beginning of Π2PC, Sim simulates the honest party’s
messages for A in the same way as Simot.

Recall that Simot makes a query to FOT during the simulation. When Simot makes a
query to FOT , Sim sends those queries to the simulator of ΠFOT

2PC in order to simulate the
answer from FOT . (Recall that the simulator of ΠFOT

2PC simulates FOT for the adversary.)

2. In the execution of ΠFOT
2PC during Π2PC, Sim simulates the honest party’s messages for A

by using the simulator of ΠFOT
2PC , who obtained the queries to FOT as above.

We remark that here we use the simulator of ΠFOT
2PC in the setting where multiple sessions of

ΠFOT
2PC are concurrently executed. However, the use of it in this setting does not cause any

problem because it runs in the black-box straight-line manner.

3.8.1 Proof of Indistinguishability.

We show that the view of the adversary in the real world and the view output by the
simulator in the ideal world are indistinguishable. The proof proceeds very similarly to the
proof for our bounded concurrent OT protocol (Section 3.5). To simplify the exposition,
below we assume that ΠFOT

2PC makes only a single call to FOT . (The proof can be modified
straightforwardly when ΠFOT

2PC makes multiple calls to FOT .)
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Recall that Π2PC is obtained by composing our OT protocol ΠOT with an OT-hybrid
2PC protocol ΠFOT

2PC . Roughly, we consider a sequence of hybrid experiments in which:

– Each execution of ΠOT is gradually changed to simulation as in the sequence of hybrid
experiments that we considered in the proof of ΠOT (Section 3.7.2.1).

– Once the execution of ΠOT in a session of Π2PC is changed to simulation completely, the
execution of ΠFOT

2PC in that session is changed to simulation.

More concretely, we consider hybrids H0, H∗0 and Hk:1, . . . , Hk:9 for k ∈ [4m], where hybrids
Hk:8 and Hk:9 are defined in the following, and the others are defined as in Section 3.7.2.1.

Hybrid Hk:8. Hk:8 is the same as Hk:7 except that in session s(k), if S is corrupted and SMk

is third special message, all the messages of ΠFOT
2PC from R are generated by the simulator of

ΠFOT
2PC . More concretely, the messages of ΠFOT

2PC from R are generated as follows. Recall that

from the definition of Hybrid Hk:3, the implicit input v∗b
def
= Value(ρext

b ,ΓR∩∆) (b ∈ {0, 1}) to
ΠOT is extracted from the adversary in session s(k) (as ρext

b are computed for both b ∈ {0, 1}).
Now, the messages of ΠFOT

2PC from R are simulated by feeding those extracted implicit input
and the subsequent messages to the simulator of ΠFOT

2PC .

Hybrid Hk:9. Hk:9 is the same as Hk:8 except that in session s(k), if R is corrupted and SMk

is fourth special message, all the messages of ΠFOT
2PC from S are generated by the simulator of

ΠFOT
2PC .

Lemma 3.8.1. Assume that in Hk:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:7 and Hk:8 are indistinguishable, and

– in Hk:8, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Lemma 3.8.2. Assume that in Hk:8 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:8 and Hk:9 are indistinguishable, and

– in Hk:9, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Lemma 3.8.2 can be proven identically with Lemma 3.8.1, and Lemma 3.8.1 can be proven
quite similarly to Claim 3.7.2 (Section 3.7.2); the only difference is that we use the security
of ΠFOT

2PC rather than the hiding of ExtCom. We give a proof of Lemma 3.8.1 in Section 3.8.2.
By combining Lemmas 3.8.1 and 3.8.2 with Lemma 3.7.3 to 3.7.9 in Section 3.7.2, we

conclude that the output of H0 and that of H4m:9 are indistinguishable, i.e. , the output of
the real world and that of the ideal world are indistinguishable. This concludes the proof of
Theorem 3.6.1.

3.8.2 Proof of Lemma 3.8.1

Proof of Lemma 3.8.1. We first show the indistinguishability betweenHk:7 andHk:8. Assume
for contradiction that Hk:7 and Hk:8 are distinguishable. From an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that even after
being fixed, Hk:7 and Hk:8 are still distinguishable. Then, by considering the transcript up
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until SMk and the table T as non-uniform advice, we can break the UC security of ΠFOT
2PC as

follows.

The environment Z internally executes Hk:7 from SMk using the non-uniform
advice while externally participating in a single session of ΠFOT

2PC via the dummy
adversary that corrupts S. In session s(k), Z forwards all the messages of ΠFOT

2PC

from the internal A to the external dummy adversary (including the query to
FOT ),14 and those from the external dummy adversary to the internal A. After
the execution of Hk:7 finishes, Z outputs the output of the internally emulated
experiment.

When Z interacts with the dummy adversary, the internally executed experiment is identical
with Hk:7, whereas when Z interacts with the simulator of ΠFOT

2PC , the internally executed
experiment is identical with Hk:8. Hence, from the assumption that Hk:7 and Hk:8 are
distinguishable, Z breaks the security of ΠFOT

2PC

We next show that in Hk:8, A does not cheat in sessions s(k), . . . , s(4m). Assume for
contradiction that in Hk:8, A cheats in one of those sessions, say, session s(j), with non-
negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk:7 but with non-negligible probability in
Hk:8. Then, by considering the transcript up until SMk and the table T as non-uniform
advice, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in an execution of ΠFOT
2PC as the environ-

ment (where the dummy adversary corrupts S) while interacting with a receiver
of NMCom, internally executes Hk:7 from SMk using the non-uniform advice. In
session s(k), ANMCom forwards all the messages of ΠFOT

2PC from the internal A to
the external dummy adversary (including the query to FOT ), and those from
the external dummy adversary to the internal A. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver. After the
execution of Hk:7 finishes, ANMCom outputs the output of the internally emulated
experiment.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When ANMCom interacts with the dummy adversary in the execution of ΠFOT
2PC , the inter-

nally executed experiment is identical with Hk:7, whereas when ANMCom interacts with the
simulator there, the internally executed experiment is identical with Hk:8. Hence, from
the assumption that A cheats in session s(j) with negligible probability in Hk:7 but with
non-negligible probability in Hk:8, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 3.8.1.

14Note that these messages appear after SMk
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3.9 Postponed Proofs

3.9.1 The Second Half of the Proof for Lemma 3.7.1

Case 2. S is corrupted in the i∗(n)-th session. We show that when A cheats, we can
break the hiding property of the RobCom(φS) commitment in Stage 0-2 (i.e., the commit-
ment by which φR is committed to). From the definition of the invariant condition (Defini-
tion 3.7.2), when A cheats, we have Ibad ∩ΓR = ∅ and either |Ibad| ≥ 0.1n or ∃b ∈ {0, 1} s.t.
ρnm
b is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i

for every i ∈ ΓR, where Ibad and ρnm
b are defined from the committed values of the NMCom

commitments in Stage 7. Similar to Case 1, we first show that we can “approximate” Ibad

and ρnm
b by extracting the committed values of the ExtCom commitments in Stage 7 using

its extractability.
First, we observe that if we extract the committed values of the ExtCom commitments in

Stage 7 of the i∗(n)-th session, the extracted values, (âS1 , d̂
S
1 , ê

S
1 ), . . . , (âS11n, d̂

S
11n, ê

S
11n), satisfy

the following.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âS1 , d̂
S
1 ), êS1 ) is not a valid decommitment of the i-th NMCom commitment in Stage 7,

or

2. (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decom-

mitment of ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it
received in Stage-2-1; or

3. S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input
and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Also, for each b ∈ {0, 1}, let ρ̂b = (ρ̂b,i)i∈∆ be defined as follows: ρ̂b,i
def
= βb,i ⊕ ŝi,b⊕αi if

i 6∈ Îbad and ρ̂b,i
def
= ⊥ otherwise. Then, we have

∗ Îbad ∩ ΓR = ∅, and

∗ either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from
a valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

with probability at least 1/2p(n).

More precisely, we observe that when A cheats in the i∗(n)-th session, the extracted values
satisfied the above condition except with negligible probability. Recall that when A cheats,
the cut-and-choose in Stage 8 is accepting but we have

– |Ibad| ≥ 0.1n, or

– ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆ that
satisfies wi = ρnmb,i for every i ∈ ΓR.

Also, notice that we have Îbad∩ΓR = ∅ when the cut-and-choose in Stage 8 is accepting, and
have |Îbad| ≥ 0.1n when |Ibad| ≥ 0.1n (this is because we have Ibad ⊆ Îbad from the definitions
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of Ibad, Îbad). Hence, to show that the extracted values satisfy the above condition when A
cheats, it suffices to show that when ∃b∗ ∈ {0, 1} s.t. ρnm

b∗ is 0.85-close to but 0.1-far from
a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb∗,i for every i ∈ ΓR, we have either

|Îbad| ≥ 0.1n or ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i for every i ∈ ΓR.
This can be shown as follows.

– If |Îbad| ≥ 0.1n, we are done.

– If |Îbad| < 0.1n, we have that ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i
for every i ∈ ΓR. This is because if |Îbad| < 0.1n,

1. ρ̂b∗ is 0.8-close tow since it is 0.99-close to ρnm
b∗ when |Îbad| < 0.1n, and ρnm

b∗ is 0.85-close
to w,

2. ρ̂b∗ is 0.1-far from w since for every i such that ρnmb∗,i 6= wi, we have ρ̂b∗,i 6= wi from the
definition of ρ̂, and

3. ρ̂b∗ satisfies wi = ρ̂b∗,i for every i ∈ ΓR since we have ρ̂b∗,i = ρnmb∗,i for every i ∈ ΓR when
the cut-and-choose in Stage 8 is accepting, and ρnm

b∗ satisfies wi = ρnmb∗,i for every i ∈ ΓR.

Based on this observation, we derive contradiction by considering the following adversary
ARobCom against the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
R or φ1

R is com-
mitted. Then, ARobCom internally executes the experiment H0 honestly except
that in the i∗(n)-th session, ARobCom uses c∗ as the commitment in Stage 0-2
(i.e. , as the RobCom commitment in which R commits to string which will be
used to mask ΓR in Stage 1-2). In Stage 1-2, ARobCom always use φ1

R to mask
ΓR. When the experiment H0 reaches Stage 7 of the i∗(n)-th session, ARobCom

extracts the committed values of the ExtCom commitments in this stage by us-
ing its extractability. Let Îbad and ρ̂b (b ∈ {0, 1}) be defined as above from the
extracted values. Then, ARobCom outputs 1 if and only if

– Îbad ∩ ΓR = ∅, and

– either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but
0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every
i ∈ ΓR.

When ARobCom receives a commitment to φ1
R, ARobCom outputs 1 with probability 1/2p(n)

(this follows from the above observation). It thus suffices to see that when ARobCom receives
a commitment to φ0

R, ARobCom outputs 1 with exponentially small probability. This can be
seen by noting that φR1 ⊕ΓR is a pure random string now, and thus the following probabilities
are exponentially small.

1. the probability that |Îbad| ≥ 0.1n but Îbad ∩ ΓR = ∅
2. the probability that there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a

valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

Hence, ARobCom breaks the hiding property of RobCom.
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3.9.2 Proof of Lemma 3.7.4

Proof. Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are
used in some of the mS-OTs in Stage 3, where those that are derived from the outcomes of
the coin tossing is used in Hk:1 and random inputs and true randomness are used in Hk:2.
We first show the indistinguishability between Hk:1 and Hk:2, relying on the hiding property
of RobCom.

Assume for contradiction that Hk:1 and Hk:2 are distinguishable. We build an efficient
adversary ARobCom that breaks the hiding property of RobCom.

The adversary ARobCom internally executes Hk:1 with the following modification:
in Stage 0-2 of session s(k), it picks two random strings ψR = ψR1 ‖ . . . , ψR11n and
ψ̃R = ψ̃R1 ‖ . . . , ψ̃R11n and sends {ψRi }i/∈ΓS and {ψ̃Ri }i/∈ΓS to the external committer
and receives back RobComfR commitments (in which either {ψRi }i/∈ΓS or {ψ̃Ri }i/∈ΓS

are committed in parallel). Then in Stage 2-2 of session s(k), ARobCom always use
ψRi ’s to mask aRi (i.e. zRi := aRi ⊕ψRi for all i ∈ [11n]). in the subsequent stages, A
proceeds the experiment as in Hk:1. After the execution of Hk:1 finishes, ARobCom

outputs whatever Z outputs in the experiment.

When ARobCom receives commitments to {ψRi }i 6∈ΓS , the internally executed experiment is
identical with Hk:1, whereas when ARobCom receives commitments to {ψ̃Ri }i 6∈ΓS , the internally
executed experiment is identical with Hk:2 (this is because when ARobCom receives commit-
ments to (ψ̃Ri )i 6∈ΓS , the values zRi = ψRi ⊕aRi (thus the values rRi = aRi ⊕bRi ) for each i 6∈ ΓS are
uniformly random for A. Hence the mS-OT for each i 6∈ ΓS is executed with a random input
and true randomness). Hence, from the assumption that Hk:1 and Hk:2 are distinguishable,
ARobCom distinguishes RobCom commitments.

We next show that in Hk:2, A does not cheat in sessions s(k), . . . , s(4m). Assume for
contradiction that in Hk:2, A cheats in one of those sessions, say, session s(j), with non-
negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk:1 but with non-negligible probability in
Hk:2. Then, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver
of NMCom, internally executes Hk:1 from SMk using the non-uniform advice. In
Stage 0-2 of session s(k), ANMCom chooses random strings ψ̃R = ψ̃R1 ‖ . . . ‖ψ̃R11n

in addition to ψR = ψR1 ‖ . . . ‖ψR11n, sends {ψRi }i 6∈ΓS and {ψ̃Ri }i 6∈ΓS to the exter-
nal committer and receives back parallel RobCom commitments (in which either
{ψRi }i 6∈ΓS or {ψ̃Ri }i 6∈ΓS are committed to), and feeds them into Hk:1. Then in Stage
2-2 of session s(k), ANMCom always use ψRi ’s to mask aRi (i.e. zRi := aRi ⊕ ψRi for
all i ∈ [11n]). Also, in session s(j), ANMCom forwards the NMCom commitments
from A to the external receiver. After the execution of Hk:1 finishes, ANMCom

outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).
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When ANMCom receives commitments to {ψRi }i 6∈ΓS , the internally executed experiment is
identical with Hk:1, whereas when ACom receives commitments to {ψ̃Ri }i 6∈ΓS , the internally
executed experiment is identical with Hk:2. Hence, from the assumption that A cheats in
session s(j) with negligible probability in Hk:1 but with non-negligible probability in Hk:2,
ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 3.7.4.

3.9.3 Proof of Lemma 3.7.6

Proof. Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted
and SMk is third special message, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆
in Stage 6-1.

We first show the indistinguishability between Hk:3 and Hk:4. Intuitively, the indistin-
guishability follows from the security of mS-OT: For every i 6∈ ΓS, the choice bit ci of the i-th
mS-OT in Stage 3 is hidden from A and hence αi = u⊕ ci in Hk:3 is indistinguishable from
a random bit. Formally, we consider the following security game against cheating sender S∗

of mS-OT.

The cheating sender S∗ first participates in 10n instances of mS-OTs in parallel
with an honest receiver R, who uses a random input ci ∈ {0, 1} in the i-th
instance. After the execution with R, S∗ receives either the choice bits {ci} or
random bits and then guesses which is the case. If S∗ guesses correctly, we say
that S∗ wins the game.

From the security of mS-OT against malicious senders, any cheating S∗ wins the game with
probability at most 1/2 + negl(n). Now, we assume for contradiction that Hk:3 and Hk:4 are
distinguishable, and we derive a contradiction by constructing an adversary who wins the
above game with probability non-negligibly higher than 1/2. From an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a way that even
after being fixed, Hk:3 and Hk:4 are still distinguishable. Then, by considering the transcript
up until SMk and the table T as non-uniform advice, we can obtain an adversary who wins
the above game with probability non-negligibly higher than 1/2 as follows.

The adversary AOT internally executes Hk:3 from SMk using the non-uniform
advice. In Stage 3 of session s(k), AOT executes the i-th mS-OT by itself for
every i ∈ ΓS but obtains the other 10n instances of mS-OT from the external
receiver. (Recall that in Hk:3, the subset ΓS is extracted in Stage 1-1.) Then,
in Stage 6 of session s(k), AOT receives bits {c∗i }i∈∆ from the external receiver

and uses them to compute {α}i∈∆, i.e. , αi
def
= u⊕ c∗i . After the execution of Hk:3

finishes, AOT outputs whatever Z outputs in the experiment.

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed ex-
periment is identical with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the
internally executed experiment is identical with Hk:4. Hence, from the assumption that Hk:3

and Hk:4 are distinguishable, AOT wins the game with probability non-negligibly higher than
1/2.
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We next show that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m). (The argument
below is similar to the one in the proof of Lemma 3.7.3.) Assume for contradiction that
in Hk:4, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk

(inclusive) in such a way that even after being fixed, A cheats in session s(j) only with neg-
ligible probability in Hk:3 but with non-negligible probability in Hk:4. Then, by considering
the transcript up until SMk and the table T as non-uniform advice, we can break the robust
non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game of mS-OT while
interacting with a receiver of NMCom, internally executes Hk:3 from SMk using
the non-uniform advice. In Stage 3 of session s(k), AOT executes the i-th mS-OT
by itself for every i ∈ ΓS but obtains the other 10n instances of mS-OT from
the external receiver. Then, in Stage 6 of session s(k), AOT receives bits {c∗i }i∈∆

from the external receiver and uses them to compute {α}i∈∆, i.e. , αi
def
= u⊕ c∗i .

Also, in session s(j), ANMCom forwards the NMCom commitments from A to the
external receiver. After the execution of Hk:3 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed ex-
periment is identical with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the
internally executed experiment is identical with Hk:4. Hence, from the assumption that A
cheats in session s(j) with negligible probability in Hk:3 but with non-negligible probability
in Hk:4, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 3.7.6.

3.9.4 Proof of Lemma 3.7.7

Proof. Recall that hybrids Hk:4, Hk:5 differ only in the values committed to in NMCom and
ExtCom for the indices outside of ΓR. Since the binding property of RobCom guarantees that
the subset opened in Stage 7 is equal to ΓR, those commitments are never opened, and the
check in Stage 8 does not fail in both hybrids.

We prove the lemma by using a hybrid argument. Specifically, we consider the following
intermediate hybrid H ′k:5.

– H ′k:5 is the same as Hk:4 except that in session s(k), if R is corrupted and SMk is second
special message,

∗ the committed subset ΓR is extracted by querying the table T , and

∗ the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero
string for every i 6∈ ΓR.
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Claim 3.9.1. Assume that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:4 and H ′k:5 are indistinguishable, and

– in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between Hk:4 and H ′k:5. Assume for contra-
diction that Hk:4 and H ′k:5 are distinguishable. From an average argument, we can fix the
execution of the experiment up until SMk (inclusive) in such a way that even after being
fixed, Hk:4 and H ′k:5 are still distinguishable. Then, by considering the transcript up until
SMk and the table T as non-uniform advice, we can break the hiding property of ExtCom as
follows.

The adversary AExtCom internally executes Hk:4 from SMk using the non-uniform
advice. In Stage 7 of session s(k), AExtCom sends (aSi , d

S
i , e

S
i )i 6∈ΓR and (0, 0, 0)i 6∈ΓR

to the external committer, receives back ExtCom commitments (in which either
(aSi , d

S
i , e

S
i )i 6∈ΓR or (0, 0, 0)i 6∈ΓR are committed to), and feeds them into Hk:4. Af-

ter the execution of Hk:4 finishes, AExtCom outputs whatever Z outputs in the
experiment.

When AExtCom receives commitments to (aSi , d
S
i , e

S
i )i 6∈ΓR , the internally executed experiment

is identical with Hk:4, whereas when AExtCom receives a commitments to (0, 0, 0)i 6∈ΓR , the
internally executed experiment is identical with H ′k:5. Hence, from the assumption that Hk:4

and H ′k:5 are distinguishable (even after being fixed up until SMk), AExtCom distinguishes
ExtCom commitments.

We next show that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for
contradiction that in H ′k:5, A cheats in one of those sessions, say, session s(j), with non-
negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk:4 but with non-negligible probability in
H ′k:5. Then, by considering the transcript up until SMk and the table T as non-uniform
advice, we can break the robust non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes Hk:4 from SMk us-
ing the non-uniform advice. In Stage 7 of session s(k),ANMCom sends (aSi , d

S
i , e

S
i )i 6∈ΓR

and (0, 0, 0)i 6∈ΓR to the external committer, receives back ExtCom commitments
(in which either (aSi , d

S
i , e

S
i )i 6∈ΓR or (0, 0, 0)i 6∈ΓR are committed to), and feeds them

into Hk:4. Also, in session s(j), ANMCom forwards the NMCom commitments from
A to the external receiver. After the execution of Hk:4 finishes, ANMCom outputs
its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When ANMCom receives commitments to (aSi , d
S
i , e

S
i )i 6∈ΓR , the internally executed experiment

is identical with Hk:4, whereas when ANMCom receives a commitments to (0, 0, 0)i 6∈ΓR , the
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internally executed experiment is identical with H ′k:5. Hence, from the assumption that
A cheats in session s(j) with negligible probability in Hk:4 and H ′k:5, ANMCom breaks the
non-malleability of NMCom.

Claim 3.9.2. Assume that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– H ′k:5 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first notice that the indistinguishability between H ′k:5 and Hk:5 can be shown as in
the proof of Claim 3.9.1. (The only difference is that we use the hiding property of NMCom
rather than that of ExtCom.)

We next show that in Hk:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for
contradiction that in Hk:5, A cheats in one of those sessions, say, session s(j), with non-
negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in H ′k:5 but with non-negligible probability in
Hk:5. Then, by considering the transcript up until SMk and the table T as non-uniform
advice, we can break the non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes H ′k:5 from SMk us-
ing the non-uniform advice. In Stage 7 of session s(k), ANMCom sends (aSi , d

S
i )i 6∈ΓR

and (0, 0)i 6∈ΓR to the external committer, receives back NMCom commitments (in
which either (aSi , d

S
i )i 6∈ΓR or (0, 0)i 6∈ΓR are committed to), and feeds them into

H ′k:5. Also, in session s(j), ANMCom forwards the NMCom commitments from A
to the external receiver. After the execution of H ′k:5 finishes, ANMCom outputs its
view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When ANMCom receives commitments to (aSi , d
S
i )i 6∈ΓR , the internally executed experiment is

identical withH ′k:5, whereas whenANMCom receives a commitments to (0, 0)i 6∈ΓR , the internally
executed experiment is identical with Hk:5. Hence, from the assumption that A cheats in
session s(j) with negligible probability in H ′k:5 but with non-negligible probability in Hk:5,
ANMCom breaks the non-malleability of NMCom.

This completes the proof of Lemma 3.7.7.

3.9.5 Proof of Lemma 3.7.8

Proof. Recall that hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are
used in some of the mS-OTs in Stage 3, where those that are derived from the outcomes of
the coin tossing is used in Hk:5 and random inputs and true randomness are used in Hk:6.
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First, we show the indistinguishability. Assume for contradiction that Hk:5 and Hk:6 are
computationally distinguishable. We build an efficient adversary ARobCom that breaks the
hiding property of RobCom.

The adversary ARobCom internally executes Hk:5 with the following modification:
in Stage 0-1 of session s(k), it picks two random strings ψS = ψS1 ‖ . . . , ψS11n and
ψ̃S = ψ̃S1 ‖ . . . , ψ̃S11n and sends {ψSi }i/∈ΓR and {ψ̃Si }i/∈ΓR to the external committer
and receives back RobCom commitments (in which either {ψSi }i/∈ΓR or {ψ̃Si }i/∈ΓR

are committed in parallel). Then in Stage 2-1 of session s(k), ARobCom always use
ψSi ’s to mask aSi (i.e. zSi := aSi ⊕ψSi for all i ∈ [11n]). in the subsequent stages, A
proceeds the experiment as in Hk:1. After the execution of Hk:1 finishes, ARobCom

outputs whatever Z outputs in the experiment.

When ARobCom receives commitments to {ψSi }i 6∈ΓR , the internally executed experiment is
identical with Hk:5, whereas when ARobCom receives commitments to {ψ̃Si }i 6∈ΓR , the internally
executed experiment is identical with Hk:6 (this is because when ARobCom receives commit-
ments to (ψ̃Si )i 6∈ΓR , the values zSi = ψSi ⊕aSi (thus the values rSi = aSi ⊕bSi ) for each i 6∈ ΓR are
uniformly random for A. Hence the mS-OT for each i 6∈ ΓR is executed with a random input
and true randomness). Hence, from the assumption that Hk:5 and Hk:6 are distinguishable,
ARobCom distinguishes RobCom commitments.

We next show that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m). Assume for
contradiction that in Hk:6, A cheats in one of those sessions, say, session s(j), with non-
negligible probability. Then, from an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk:5 but with non-negligible probability in
Hk:6. Then, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver
of NMCom, internally executes Hk:5 from SMk using the non-uniform advice. In
Stage 0-1 of session s(k), ANMCom chooses random strings ψ̃S = ψ̃S1 ‖ . . . ‖ψ̃S11n

in addition to ψS = ψS1 ‖ . . . ‖ψS11n, sends {ψSi }i 6∈ΓR and {ψ̃Si }i 6∈ΓR to the exter-
nal committer and receives back parallel RobCom commitments (in which either
{ψSi }i 6∈ΓR or {ψ̃Si }i 6∈ΓR are committed to), and feeds them into Hk:5. Then in Stage
2-1 of session s(k), ANMCom always use ψSi ’s to mask aSi (i.e. zSi := aSi ⊕ ψSi for
all i ∈ [11n]). Also, in session s(j), ANMCom forwards the NMCom commitments
from A to the external receiver. After the execution of Hk:5 finishes, ANMCom

outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When ANMCom receives commitments to {ψSi }i 6∈ΓR , the internally executed experiment is
identical with Hk:1, whereas when ACom receives commitments to {ψ̃Si }i 6∈ΓR , the internally
executed experiment is identical with Hk:6. Hence, from the assumption that A cheats in
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session s(j) with negligible probability in Hk:5 but with non-negligible probability in Hk:6,
ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 3.7.8.

3.9.6 Proof of Claim 3.7.6

Proof. Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted
and SMk is fourth special message, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi for
every b ∈ {0, 1} and i ∈ ∆ \ Ib.

First, we show the indistinguishability between Hk:6 and H ′k:6. Roughly, we prove the
indistinguishability using the security of mS-OT: For every i ∈ ∆ \ Ib, A executed the i-th
mS-OT honestly with choice bit (1 − b) ⊕ αi, and the sender’s input and randomness of
this mS-OT are not revealed in Stage 8; therefore, the value of si,b⊕αi is hidden from A and
thus βb,i = ρb,i ⊕ si,b⊕αi is indistinguishable from a random bit. Formally, we consider the
following security game against cheating receiver R∗ of mS-OT.

The cheating receiver R∗ gets random input-randomness pairs (ci, τ
R
i )i of mS-OT

instances as input. R∗ then participates in 9n instances of mS-OTs in parallel
with an honest sender S, who uses a random input (si,0, si,1) in the i-th instance.
After the execution with S, R∗ receives bits (s∗i,0, s

∗
i,1)i that are defined as follows:

Let b∗ ∈ {0, 1} be a randomly chosen bit; if b∗ = 0, then for every i, s∗i,0
def
= si,0

and s∗i,1
def
= si,1; if b∗ = 1, then for every i such that R∗ behaved honestly in the

i-th mS-OT using (ci, τ
R
i ) as input and randomness, s∗i,ci

def
= si,ci but s∗i,1−ci is a

random bit, and for every other i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1. Then, R∗ guesses

the value of b∗, and if the guess is correct, we say that R∗ wins the game.

From the security of mS-OT against semi-honest receivers, any cheating R∗ wins the game
with probability at most 1/2+negl(n). Now, we assume for contradiction that Hk:6 and H ′k:6

are distinguishable, and we derive a contradiction by constructing an adversary who wins
the above game with probability non-negligibly higher than 1/2. From an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a way that even
after being fixed, Hk:6 and H ′k:6 are still distinguishable. Then, by considering the transcript
up until SMk and the table T as non-uniform advice, we can obtain an adversary who wins
the above game with probability non-negligibly higher than 1/2 as follows.

The adversary R∗ gets random input-randomness pairs (ci, τ
R
i )i∈∆\ΓR of mS-OT

instances as its input, and internally executes H ′k:6 from SMk using the non-
uniform advice. In Stage 2-2, R∗ chooses bR = (bR1 , . . . , b

R
11n) in such a way that

rR = (rR1 , . . . , r
R
11n) satisfies rRi = ci ‖τRi for every i ∈ ∆ \ΓR, namely, chooses bR

such that bRi = aRi ⊕(ci ‖τRi ) for every i ∈ ∆\ΓR. (Recall that in H ′k:6, the subset
ΓR and the strings aR = (aR1 , . . . , a

R
11n) are extracted by brute force and they are

included in the non-uniform advice.) In Stage 3 of session s(k), ANMCom obtains
the i-th mS-OT from the external sender for every i ∈ ∆\ΓR and executes other
instances of mS-OT by itself. Then, in Stage 6 of session s(k), R∗ receives bits
(s∗i,0, s

∗
i,1)i∈∆\ΓR from the external sender and uses them to compute βb,i for every
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i ∈ ∆ \ ΓR, i.e. , βb,i := ρb,i ⊕ s∗i,b⊕αi . After the execution of H ′k:6 finishes, R∗

outputs whatever Z outputs in the experiment.

When b∗ = 0 in the security game (and hence s∗i,b⊕αi = si,b⊕αi for every i and b), the internally
executed experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi is a
random bit if i ∈ ∆ \ Ib and s∗i,b⊕αi = si,b⊕αi otherwise), the internally executed experiment
is identical with H ′k:6. Hence, from the assumption that Hk:6 and H ′k:6 are distinguishable,
R∗ wins the game with probability non-negligibly higher than 1/2.

Next, we show that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m). (The argument
below is similar to the one in the proof of Lemma 3.7.3.) Assume for contradiction that
in H ′k:6, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk

(inclusive) in such a way that after being fixed, A cheats in session s(j) only with negligible
probability in Hk:6 but with non-negligible probability in H ′k:6. Then, by considering the
transcript up until SMk and the table T as non-uniform advice, we can break the robust
non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game while interacting
with a receiver of NMCom, gets random input-randomness pairs (ci, τ

R
i )i∈∆\ΓR of

mS-OT instances as its input, and internally executes H ′k:6 from SMk using the
non-uniform advice. In Stage 2-2, ANMCom chooses bR = (bR1 , . . . , b

R
11n) in such a

way that rR = (rR1 , . . . , r
R
11n) satisfies rRi = ci ‖ τRi for every i ∈ ∆ \ ΓR, namely,

chooses bR such that bRi = aRi ⊕ (ci ‖ τRi ) for every i ∈ ∆ \ ΓR. In Stage 3 of
session s(k), ANMCom obtains the i-th mS-OT from the external sender for every
i ∈ ∆ \ ΓR and executes other instances of mS-OT by itself. Then, in Stage 6 of
session s(k), ANMCom receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR from the external sender and

uses them to compute βb,i for every i ∈ ∆ \ΓR, i.e. , βb,i := ρb,i⊕ s∗i,b⊕αi . Also, in
session s(j), ANMCom forwards the NMCom commitments from A to the external
receiver. After the execution of H ′k:6 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values
committed by ANMCom (which are equal to the values committed to by A in
session s(j) in the internally executed experiment). DNMCom then outputs 1 if
and only if A cheated in session s(j).

When b∗ = 0 in the security game (and hence s∗i,b⊕αi = si,b⊕αi for every i and b), the internally
executed experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi is a
random bit if i ∈ ∆\Ib and s∗i,b⊕αi = si,b⊕αi otherwise), the internally executed experiment is
identical with H ′k:6. Hence, from the assumption that A cheats in session s(j) with negligible
probability in Hk:6 but with non-negligible probability in H ′k:6, ANMCom breaks the robust
non-malleability of NMCom.

This completes the proof.
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Chapter 4

Black-Box Angle-Based UC MPC in
Õ(log λ) Rounds

4.1 Overview of Our Techniques

4.1.1 Existing Approaches

Let us briefly review the current approaches for constructing CCA secure commitments.
The main difficulty in constructing CCA secure commitments under polynomial hardness
is to move from the real world—which contains the exponential time decommitment oracle
O—to a hybrid where O’s responses can be efficiently simulated. A standard way to do
this is to use a proof-of-knowledge (PoK): the protocol should require the (man-in-the-
middle) adversary, say A, to give a PoK of the value it commits. The main difficulty in
employing this is that A may open concurrently many sessions with O (referred here to as
“right” side sessions), interleaved in an arbitrary manner; furthermore, these values have to
be extracted immediately within each session irrespective of what happens in other sessions.
This is precisely the issue in constructing (black-box simulatable) concurrent zero-knowledge
(CZK) protocols [DNS98] as well, and ideas from there are applied in this setting too. A
second difficulty is that these extractions must happen without rewinding the commitment
A receives (referred to as “left” side session).

It is worthwhile to quickly recall the (tag-based) non-malleable commitment construction
in the original work of [DDN91]. In this construction, A has only one right session; to prove
that the value on the right is (computationally) independent from that on the left, the value
on the right is extracted without rewinding the sensitive parts of the left side commitments.
This is done by creating two types of PoK—one each for two possible values of a bit. These
PoK create rewinding “slots” for extraction such that if A uses a different bit in the tag, it
risks the possibility of having to perform a PoK on its own—i.e., without any “dangerous”
rewinding on the left—in one of the slots (called a “free” slot). These special PoK are
performed for each bit of the tag sequentially so that at least one free slot is guaranteed since
the left and right tags are different by definition. While this requires λ rounds for λ-bit tags,
it is possible to split the tag into λ smaller tags of log λ bits and run the protocol for each of
them in parallel [DDN91, LPV08]. Referred to as “LOG trick,” this yields a O(log λ)-round
protocol.
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The key idea for CCA commitments in [CLP10], at a high level, is to ensure that in the
concurrent setting, many free slots exist for each session so that extraction succeeds before
the end of that session. This is achieved by creating a polynomial-round protocol consisting
of sequential repetition of special PoK as above and then relying on an analysis that is, at
a high level, similar to early rewinding techniques from CZK literature [RK99, CGGM00].
Once the issue of concurrent extraction is handled, the additional ideas in [LP12] are (again,
at a high level) to enforce this approach using cut-and-choose protocols to obtain a black-
box construction. The work of Goyal et al. [GLP+15] shows how to separate the tasks
of “concurrent extraction” and“non-malleability” in this approach by proving a “robust
extraction lemma”. This allows them to follow a structure similar to that of concurrent non-
malleable zero-knowledge (CNMZK) from [BPS06] which matches the round complexity of

CZK, i.e., Õ(log λ). However, their approach requires non-black usage of one-way functions.
Kiyoshima [Kiy14] shows that the robust-extraction lemma can actually be applied to the

previous black-box protocol of [LP12] to get Õ(k · log λ) rounds if one has a slightly stronger
primitive than non-malleable commitments: namely k-round 1-1 CCA commitments. To
build such commitments, Kiyoshima builds non-malleability “from scratch” by combining
the DDN “LOG trick” with cut-and-choose components of [LP12] so that the extraction on
right in the standalone setting, can be done without any dangerous rewinding on left. This
however results in O(log λ) rounds for 1-1 CCA and Õ(log2 λ) for full CCA.

4.1.2 Our Approach

We significantly deviate from current approaches for constructing 1-1 CCA commitments.
Instead of attempting to build non-malleability from scratch, our goal is to have a generic
construction built around existing non-malleable commitments. The resulting protocol will
not only have a simpler and more modular proof of security, but will also benefit from the
efficiency and assumptions of the underlying non-malleable commitment (NMCom). Towards
this goal, we return to investigate the structure of CNMZK protocols even for the simpler
case of 1-1 CCA.

Setting aside the issue of round-complexity for the moment, a key idea in the construction
of CNMZK protocols [BPS06, LPTV10, OPV10, LP11] is to have the prover give a non-
malleable commitment (NMCom) which can later be switched to a “trapdoor value” set by the
verifier; the non-malleability of NMCom ensures that A cannot switch his value to a trapdoor
on the right (unless he did so in the real world, which can be shown impossible through
other means). The prover later proves that either the statement is true or it committed the
trapdoor. The main problem with this approach is that it requires us to prove a predicate
over the value committed in NMCom which requires non-black-box use of cryptographic
primitives.

Non-Malleable Commit-and-Prove. One potential idea to avoid non-black-box tech-
niques is to turn to black-box commit-and-prove protocols in the literature and try to re-
develop them in the context of non-malleability. Commit-and-prove protocols allow a com-
mitter to commit to a value v so that later, it can prove a predicate φ over the committed
value in zero-knowledge. These protocols can be constructed in constant rounds using the
powerful “MPC-in-the-head” approach introduced by Ishai et al. [IKOS07]. The approach
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allows committing multiple values v1, . . . , vn and then proving a joint predicate φ over them.
One such construction is implicit in the work of Goyal et al. [GLOV12]. Such commitments
were also used extensively by Goyal et al. to build size-hiding commit-and-prove [GOSV14]
and an optimal four round construction was obtained by Khurana, Ostrovsky, and Srinivasan
[KOS18]. As noted above, if we can develop an appropriate non-malleable version of such
protocols, it is conceivable that they can yield constant-round 1-1 CCA commitment. Note
however that non-malleable commitments are not usually equipped to handle proofs. There-
fore, such an approach will necessarily have to “open up” the construction of non-malleable
commitments. In particular, like previous constructions, this approach cannot be based on
non-malleable commitments in a black-box manner.

Changing the Direction of NMCom. In order to rely on non-malleable commitments
directly, it is essential that we do not prove anything about the values committed inside
the NMCom. Instead, we should restrict all proofs to be performed only over standard
commitments since for them we can use standard black-box commit-and-prove protocols.
Towards building this property, what if we change the direction of NMCom and ask the
receiver of 1-1 CCA to send non-malleable commitments, which, for example, can be opened
later? More specifically, in our 1-1 CCA protocol, the receiver will send a NMCom to a
random value σ which it will open subsequently. The committer will send a “trapdoor
commitment” t before it sees σ opened. Later, the committer will commit to the desired value
v and give a PoK that either it knows v or t is a commitment to σ (the “trapdoor”). Observe
that this structure completely avoids any proof directly over non-malleable commitments;
all proofs only need to be performed over ordinary commitments. Therefore, if we use the
commit phase of black-box commit-and-prove protocols to commit to σ and v we can easily
complete the PoK in a black-box manner: the predicate φ in the proof phase will simply test
for the presence of trapdoor σ. Some standard soundness issues arise in this approach but
they can be handled by ensuring that the commit phase is extractable.

Although this approach yields a black-box construction directly from NMCom, it is hard
to prove the 1-1 CCA property. At a high level, this is because of the following: if in the
1-1 CCA game, A schedules the completion of the left NMCom before the right one1, the
simulator in the security proof must extract σ from this NMCom while the right NMCom is
still in play (so that it can generate t to be a commitment to σ). This involves rewinding
the left NMCom (assuming it is extractable) which in turn rewinds the right session.2 A
similar issue arises in the work of Jain and Pandey [JP14] on black-box non-malleable zero-
knowledge where it is resolved by using a NMCom that is already 1-1 CCA secure. We do
not have this flexibility in our setting.

A possible fix for this issue is to rely on some kind of “delayed input” property: i.e., the
commitment to t will be an extractable commitment that does not require the message m to
be committed until the last round. This property can be obtained by committing to a key k
in an extractable manner and then in the last round committing to m by simply encrypting
with k. This however will no longer be compatible with the black-box commit-and-prove

1Note that NMCom’s direction is opposite to that of 1-1 CCA: the receiver of 1-1 CCA is the sender of
right NMCom.

2This is not an issue in the synchronous schedule since in that case, the value A commits to in NMCom
is provided to the distinguisher along with the joint view.
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strategy since we will now have to take encryption into account.
We overcome this issue by making extensive use of extractable commitments. More

specifically, we first prepend the NMCom with a standard “slot-based” extractable commit-
ment which commits to the same value σ as the NMCom. If the NMCom also has a slot
like extractable structure (e.g., the three round scheme of [GPR16]), we can argue that
non-synchronous adversaries must always leave a free slot either on top or at the bottom
of NMCom. For example, in the troublesome scheduling discussed above, A can be easily
rewound in the last two messages of NMCom (if we use [GPR16]) without rewinding the right
NMCom. In other non-synchronous schedules it will have a free slot in the top extractable
commitment on the left. On the other hand, synchronous adversaries will fail in the NMCom
step (and synchronous non-malleability suffices for our purposes). In summary, this will
suffice for us to show that even if our simulator sets up the trapdoor statement on the left
(by committing σ in t), A cannot do the same on the right. Other NMCom, particularly
public-coin extractable NMCom also seem sufficient.

A second issue here is the intertwining of the left PoK3 with “extractable” components
on the right, e.g., the right PoK (or extractable commitment steps). In order to prove that
A cannot setup the trapdoor, extraction from right PoK will be necessary in the proof and
this will be troublesome when changing the witness in the left PoK during hybrids. This
issue can be handled using the sequential repetition technique from [LP09]: we use k+1 PoK
where k is the (constant) rounds in a single PoK. It is worthwhile to note that other common
methods for handling this issue do not work: e.g., we cannot rely on statistical WI since it
requires stronger assumptions for constant rounds; we also cannot use proofs that are secure
against a fixed number of rewinds since they usually allow only a noticeable probability of
extraction which is insufficient for a 1-1 CCA commitment, where extraction must succeed
with overwhelming probability.

4.2 Preliminaries

In the following, we present additional preliminaries that are necessary for this chapter.

4.2.1 CCA Commitments

We define the notion of CCA-secure commitments (and 1-1 CCA security in particular).
These definitions rely on the notion of a decommitment oracle, which provide decommitments
given valid transcripts to a particular (tag based) commitment protocol. Specifically, a
decommitment oracle O for a given commitment protocol acts as follows:

– O acts as an honest reciever against some committer C, participating faithfully according
to the specified commitment scheme. C is allowed to pick a tag for this interaction
adaptively.

– At the end of this interaction, if the honest reciever were to accept the transcript as
containing a valid commitment with respect to the given tag, O returns the value v

3Observe that the PoK will just be the proof part of appropriate black-box commit-and-prove with right
parameters to ensure black-box property; they will also satisfy witness-indistinguishability [FS90].
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committed by C to it. Otherwise, it returns ⊥.

We denote an adversary with access to the decommitent oracle as AO. CCA security then
essentially constitutes preservation of the hiding property even against adversaries enjoying
such oracle access. More formally, we define the following game INDb(〈C,R〉,A,O, λ, z)
(b ∈ {0, 1}) as follows: given the public parameter 1λ and auxiliary input z, the adversaryAO
adaptively generates two challenge values v0, v1 of length λ, and a tag tag ∈ {0, 1}λ. Then,
AO receives a commitment to vb with tag tag from the challenger. Let y be the output of A
in this game. The output of the game is ⊥ if during the game, A sends O any commitment
using tag tag. Otherwise, the output of the game is y. We abuse notation to denote the
output of the game INDb(〈C,R〉,A,O, λ, z) by the same symbol INDb(〈C,R〉,A,O, λ, z).

Definition 4.2.1 (CCA Commitment). Let 〈C,R〉 be a tag-based commitment scheme, and
O be an associated decommitment oracle. Then 〈C,R〉 is said to be CCA secure w.r.t.
O, if for every nonuniform PPT machine A, the following ensembles are computationally
indistinguishable:

– {IND0(〈C,R〉,A,O, λ, z)}λ∈N,z∈{0,1}∗
– {IND1(〈C,R〉,A,O, λ, z)}λ∈N,z∈{0,1}∗

It is customary to call any commitment scheme that is CCA secure with respect to some
decommitment oracle as just CCA secure (but in general the oracle is usually also described,
and is of course necessary to prove such security). It is also customary to call the interaction
between the challenger and adversary as the left interaction, and that between adversary
and oracle as the right interaction, in the fashion of non-malleable commitments, where the
security property chiefly considers man in the middle attacks.

1-1 CCA. A scheme is 1-1 CCA secure (denoted as CCA1:1) if the corresponding adversary
is only allowed one interaction with the oracle.

4.2.2 Angel-Based Universally Composable (or UC-SPS) MPC

4.2.2.1 UC Security

We first briefly review UC security. For full details see [Can00b]. A large part of this
section has been taken verbatim from [CLP10, GGJS12, Lin12]. We first review the model
of computation, ideal protocols, and the general definition of securely realizing an ideal
functionality. Next we present hybrid protocols and the composition theorem.

The Basic Model of Execution. At a high level, UC security is defined following the
similar ideal/real paradigm as in Section 2.5 with the following major differences:

– instead of a single execution, the n parties are executing several instances of the same
protocol simultaneously.

– There is an environment that prepares inputs to all the parties, corrupts a subset of
parties, and interacts with the corrupted parties during the execution.

Following [GMR89, Gol01], a protocol is represented as an interactive Turing machine
(ITM), which represents the program to be run within each participant. Specifically, an ITM
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has three tapes that can be written to by other ITMs: the input and subroutine tapes model
the inputs from and the outputs to other programs running within the same “entity” (say, the
same physical computer), and the incoming communication tapes and outgoing communication
tapes model messages received from and to be sent to the network. It also has an identity
tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified
below.Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances
of ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an
ITI is an ITM along with an identifier that distinguishes it from other ITIs in the same
system. The identifier consists of two parts: a session-identifier (SID) which identifies which
protocol instance the ITM belongs to, and a party identifier (PID) that distinguishes among
the parties in a protocol instance. Typically the PID is also used to associate ITIs with
“parties”, or clusters, that represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s
tapes in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of
the ITI in the system.

With one exception (discussed within) we assume that all ITMs are PPT. An ITM is PPT
if there exists a constant c > 0 such that, at any point during its run, the overall number of
steps taken by M is at most nc, where n is the overall number of bits written on the input
tape of M in this run. (In fact, in order to guarantee that the overall protocol execution
process is bounded by a polynomial, we define n as the total number of bits written to the
input tape of M , minus the overall number of bits written by M to input tapes of other
ITMs (see [Can01]).

The Model for Protocol Execution. The model of computation consists of the parties
running an instance of a protocol Π, an adversary A that controls the communication among
the parties, and an environment Z that controls the inputs to the parties and sees their
outputs. We assume that all parties have a security parameter λ ∈ N. (We remark that
this is done merely for convenience and is not essential for the model to make sense). The
execution consists of a sequence of activations, where in each activation a single participant
(either Z, A, or some other ITM) is activated, and may write on a tape of at most one other
participant, subject to the rules below. Once the activation of a participant is complete (i.e.,
once it enters a special waiting state), the participant whose tape was written on is activated
next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input.
In the context of UC security, the environment can from now on invoke (namely, provide
input to) only ITMs that consist of a single instance of protocol Π. That is, all the ITMs
invoked by the environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communi-
cation tapes of all parties. It may either deliver a message to some party by writing this
message on the party’s incoming communication tape or report information to Z by writ-
ing this information on the subroutine output tape of Z. For simplicity of exposition, in
the rest of this paper we assume authenticated communication; that is, the adversary may
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deliver only messages that were actually sent. (This is however not essential as shown in
[Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given
by the environment or due to a message delivered by the adversary, it follows its code and
possibly writes a local output on the subroutine output tape of the environment, or an
outgoing message on the adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol
execution is the output of the environment. Without loss of generality we assume that this
output consists of only a single bit.

Let EXECΠ,A,Z(λ, z, r) denote the output of the environment Z when interacting with
parties running protocol Π on security parameter λ, input z, and random input

r = rZ , rA, r1, r2, . . . , rn

as described above (z and rZ for Z, rA for A, and ri for party Pi). Let EXECΠ,A,Z(λ, z)
random variable describing EXECΠ,A,Z(λ, z, r) where r is uniformly chosen. Let EXECΠ,A,Z
denote the ensemble {EXECΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient
in the ideal protocol is the ideal functionality that captures the desired functionality, or the
specification, of that task. The ideal functionality is modeled as another ITM (representing
a “trusted party”) that interacts with the parties and the adversary. More specifically, in
the ideal protocol for functionality F all parties simply hand their inputs to an ITI running
F . (We will simply call this ITI F . The SID ofFis the same as the SID of the ITIs running
the ideal protocol. The PID of F is null.) In addition, F can interact with the adversary
according to its code. Whenever F outputs a value to a party, the party immediately copies
this value to its own output tape. We call the parties in the ideal protocol dummy parties.
Let ΠF denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol
φ if for any adversary A there exists an adversary Sim such that no environment Z, on any
input, can tell with non-negligible probability whether it is interacting withAand parties
running Π, or it is interacting with Sim and parties running φ. This means that, from the
point of view of the environment, running protocol Π is just as good as interacting with φ.
We say that Π securely realizes an ideal functionality F if it emulates the ideal protocol
ΠF . More precise definitions follow. A distribution ensemble is called binary if it consists of
distributions over {0, 1}.
Definition 4.2.2. Let Π and φ be protocols. We say that UC-emulates φ if for any adversary
A, there exists an adversary Sim such that for any environment Z that obeys the rules of

interaction for UC security we have EXECφ,Sim,Z
c
≈ EXECΠ,A,Z .

Definition 4.2.3. Let F be an ideal functionality, and let Π be a protocol. We say that Π
UC-realizes F if Π UC-emulates the ideal process ΠF .
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Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating
as usual as in the standard model of execution, the parties also have access to (multiple
copies of) an ideal functionality. Hybrid protocols represent protocols that use idealizations
of underlying primitives,or alternatively make trust assumptions on the underlying network.
They are also instrumental instating the universal composition theorem. Specifically, in an
F -hybrid protocol (i.e., in a hybrid protocol with access to an ideal functionality F), the
parties may give inputs to and receive outputs from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the
input tape of that copy. Similarly, each copy of F writes the output values to the subroutine
output tape of the corresponding party. It is stressed that the adversary does not see the
interaction between the copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all
outputs from each copy carry the corresponding SID. The model does not specify how the
SIDs are generated, nor does it specify how parties “agree” on the SID of a certain protocol
copy that is to be run by them. These tasks are left to the protocol. This convention seems
to simplify formulating ideal functionalities, and designing protocols that securely realize
them, by freeing the functionality from the need to choose the SIDs and guarantee their
uniqueness. In addition, it seems to reflect common practice of protocol design in existing
networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid
protocols in the natural way.

The Universal Composition Operation. We define the universal composition operation
and state the universal composition theorem. Let ρ be an F -hybrid protocol, and let Π be
a protocol that securely realizes F . The composed protocol ρΠ is constructed by modifying
the code of each ITM in ρ so that the first message sent to each copy of F is replaced with
an invocation of a new copy of Π with fresh random input, with the same SID, and with the
contents of that message as input. Each subsequent message to that copy of F is replaced
with an activation of the corresponding copy of Π, with the contents of that message given
to Π as new input. Each output value generated by a copy of Π is treated as a message
received from the corresponding copy of F . The copy of Π will start sending and receiving
messages as specified in its code. Notice that if Π is a G-hybrid protocol (i.e., ρ uses ideal
evaluation calls to some functionality G) then so is ρΠ.

The Universal Composition Theorem. Let F be an ideal functionality. In its general
form, the composition theorem basically says that if Π is a protocol that UC-realizes F
then, for any F -hybrid protocol ρ, we have that an execution of the composed protocol ρΠ

“emulates” an execution of protocol ρ. That is, for any adversary A there exists a simulator
Sim such that no environment machine Z can tell with non-negligible probability whether it
is interacting with A and protocol ρΠ or with Sim and protocol ρ, in a UC interaction. As
a corollary, we get that if protocol ρ UC-realizes F , then so does protocol ρΠ.4

4The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely
protocols that do not share subroutines with any other protocol in the system.
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Theorem 4.2.1 (Universal Composition [Can01]). Let F be an ideal functionality. Let ρ
be a F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-
emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some func-
tionality G, then so does ρΠ.

4.2.2.2 UC Security with Super-Polynomial Helpers (aka Angles)

Angle-based UC security, or UC with super-polynomial-helpers (SPS-UC), is obtained by
modifying the definitions of UC security, by giving the corrupted parties access to an ex-
ternal “helper” entity, in a conceptually similar way to [PS04]. This entity, denoted H,
is computationally unbounded, and can be thought of as providing the corrupted parties
with some judicious help. (As we will see, this help will be used to assist the simulator to
“reverse engineering” the adversary in order to extract relevant information hidden in its
communication.)

The definition uses the formalism of extended-UC (EUC) security [CDPW07]. Specifi-
cally, the helper entity is modeled as an ITM that is invoked directly by the environment,
and that interacts with the environment and the corrupted parties. More formally, let H
be an ITM. An environment Z is called aided by H if: (a) Z invokes a single instance H
immediately after invoking the adversary; (b) As soon as a party (i.e., an ITI) P is corrupted
(i.e., P receives a corrupted message), Z lets H know of this fact; (c) H interacts only with
the corrupted parties. Then:

Definition 4.2.4 (SPS-UC). Let π and φ be protocols, and let H be a helper functional-
ity (i.e., an ITM). We say that π H-EUC-emulates φ if for any adversary A there exists

an adversary Sim such that for any environment Z aided by H, we have EXECφ,Sim,Z
c
≈

EXECπ,A,Z .

The meaningfulness of the above relativizing UC security of course depends on the par-
ticular helper ITM in use. Still, it is easy to see that if protocol π H-EUC-emulates protocol
φ where H obeys the above rules and runs in time T (λ), then π UC-emulates φ according
to a relaxed notion where the adversary Sim can run in time poly(T (λ)). As noted in the
past, for many protocols and ideal functionalities, this relaxed notion of security suffices even
when T (λ) = eλ [Pas03, PS04, BS05, MMY06].

Universal Composition with Super-Polynomial Helpers. The universal composition
theorem generalizes naturally to the case of EUC, even with super-polynomial helper func-
tionalities:

Theorem 4.2.2 (SPS Universal Composition). Let F be an ideal functionality, let H be a
helper functionality, let π be an F-hybrid protocol, and let ρ be a protocol that H-EUC-realizes
F . Then protocol πρ H-EUC-emulates π.

4.3 A New CCA1:1 Commitment Scheme

We will require the following ingredients for our CCA1:1 protocol:
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– A statistically-binding commitment Com. In particular, we use Naor’s construction [Nao90].

– A 3-round slot-based extractable commitment scheme ExtCom; for concreteness we will
use the standard 3-round scheme (shown in Protocol 2.3.1) based on Naor’s commitment
(the first message ρ of Naor’s commitment is not counted in rounds and assumed to be
available from other parts of the protocol).

– An (extractable) commitment scheme ENMC that is non-malleable against synchronizing
adversaries. We will need this protocol to be “compatible with slots” of the ExtCom defined
above. For concreteness, we assume that ENMC is the 3-round commitment scheme of
[GPR16] which satisfies all our requirements.

– A k round witness indistinguishable argument of knowledge WIAoK.

We stress that all of these ingredients have constant rounds, and can be constructed from
standard OWFs in a black-box manner.

Our Protocol. We now describe our first protocol for CCA1:1 commitments. This protocol
does not specifically try to achieve the black-box usage of cryptographic primitives. This
allows us to focus on proving CCA security. However, it achieves two important properties:
it is based on minimal assumptions, and it has a constant number of rounds. Moreover, the
structure of this protocol is chosen in such a way that later, it will be possible to convert
into a fully black-box construction. We remark that we also directly use identities of length
λ directly (this is in keeping with the [GPR16] construction which does the same).

The formal description of the protocol appears in Protocol 4.3.1. At a high level, the
protocol proceeds as follows. First, it requires the receiver to commit to a trapdoor string α
using two extractable primitives: ExtCom as well as ENMC. Next, the committer will commit
to an all zero-string β using ExtCom. Jumping ahead, in the security proof a “simulator
machine” on left will set β = α and use it as a “fake witness” in a WIAoK; later we shall
instantiate ExtCom with, roughly speaking, a “black-box commit-and-prove” to obtain a
black-box construction. The receiver simply opens α in the next step, and the committer
commits to the desired value, say v, followed by a proof of knowledge of v or that β = α. A
crucial observation here is that proofs are not required to deal with values inside ENMC—by
ensuring that ENMC values opened in the protocol execution.

Protocol 4.3.1: CCA1:1 Commitment Scheme 〈C, R〉CCA

We let λ ∈ N denote the security parameter. All primitives used in the protocol by default
have 1λ as part of their input. We omit this detail in the following. Further, we assume
that the execution involves a tag or identity id ∈ {0, 1}λ.
Input: The committer C and reciever R have common input as the security parameter
1λ. Additionally, C has as private input a value v which it wishes to commit to.

Commitment Phase. This proceeds as follows:

– Stage 0: C commits to the value v using Com, and sends this along with the identity
id to R.

– Stage 1: This consists of the following steps:
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(a) R picks a value α
$←− {0, 1}λ.

(b) R commits to α1 = α using ExtCom.

– Stage 2: R commits to α2 = α using ENMC, using identity id.

For future reference, we denote by CombinedCom the joint execution of Stage 1 and 2 up
to this point. Observe that CombinedCom is a statistically binding commitment scheme.

– Stage 3: C now commits to β = 0λ using ExtCom.

– Stage 4: This goes as follows:

1. R decommits to both its commitments so far, revealing α1 and α2.

2. C checks these decommitments, aborting if α1 6= α2.

– Stage 5: C and R engage in k + 1 WIAoK protocols sequentially. We denote these
WIAoK executions as WIAoKi for i = 1, . . . , k + 1. In all these WIAoKs, C proves the
same (compound) statement which is true if and only if:

(a) there exists randomness η s.t. c = Com(v; η); or

(b) β = α1 = α2, where β is the unique string committed in the transcript of Stage-3.

Note that an honest prover will always use the witness for part-(a) of the above com-
pound statement, which we refer as the “original witness”. We will refer the witness for
part-(b) of the compound statement. Looking ahead, some hybrids will use the trapdoor
witness to go through the WIAoKs.

Decommitment Phase. The committer C decommits to v and β. R checks if these
decommitments are valid, and accepts if so.

Theorem 4.3.1. The protocol 〈C,R〉CCA (described in Protocol 4.3.1) is a 1-1 CCA com-
mitment scheme.

Proof. The statistical-binding property of protocol 〈C,R〉CCA is straightforward. The com-
putational hiding property is implied by the 1-1 CCA security as per Definition 4.2.1. In
what follows, we focus on the proof of 1-1 CCA security. We prove this property in two
steps: we first exhibit a proof of security against synchronizing adversaries in Section 4.3.1,
and then consider non-synchronizing adversaries in Section 4.3.2.

4.3.1 Proof for Synchronous Adversaries

1-1 CCA Security. Recall that in the CCA challenge for commitments, the adversary is
a man-in-the-middle adversary that interacts with an honest committer on the left and a
decommitment oracle on the right that acts as an honest reciever till the end of the interaction
and then reveals the committed value to the adversary if the commitment was valid. The
idea is that such an adversary cannot tell apart two different values being committed on the
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left even given access to the decommitment returned by the oracle on the right.
We will show that the adversary’s ultimate output in such a game is indistinguishable

for any two distinct values being committed on the left (this is because the values to be
committed can be chosen adaptively by the adversary).

Thus consider that there is a man-in-the-middle adversary A that participates in the
CCA challenge outlined above. As before, we will use the convention that unmarked symbols
indicate values used in the left interaction and symbols marked with a tilde indicate values
used in the right interaction. Fix two arbitrary values v0 and v1 in the message space. We
will now show

{IND0(〈C,R〉CCA,A,O, λ, z)}λ∈N,z∈{0,1}∗
c
≈ {IND1(〈C,R〉CCA,A,O, λ, z)}λ∈N,z∈{0,1}∗

To this end, we will use a hybrid argument.
We now describe the hybrids, and prove indistinguishability between contiguous ones.

In the process, we will also mark out particular concerns that may render these arguments
invalid in the non-synchronous case, and resolve these concerns later.

An Invariant Condition. In each hybrid we will need to refer to the value committed
by the man-in-the-middle A in Stage 3 of the protocol, denoted by β̃. Since ExtCom is a
statistically binding commitment, the value β̃ is always uniquely defined given the transcripts
of ExtCom5. We can formally refer to this value w.r.t. any given machine M : if t is the
output of M , we parse t to uniquely obtain the transcript corresponding to ExtCom in the
right execution. We then define β̃ to be the value in that transcript and β̃ = ⊥ if this
transcript in t is not uniquely defined. Furthermore, we define α̃ to be the value that
corresponds to the opening in Stage 3 on right in the output t, setting α̃ = ⊥ if this value
is not uniquely defined for the given t or the decommitments are invalid. We refer to these
values by β̃(t) and α̃(t) if we wish to be explicit about t, and unless specified otherwise, M
is assumed to receive a parameter λ as its first input. Note that the role of M will be taken
by hybrid machines in the proof. We can now define:

Definition 4.3.1 (Invariant Condition). For a Turing machine M , the invariant condition
is said to hold for M if there exists a negligible function negl(·) such that:

Pr
t←M(1λ)

[
β̃(t) = α̃(t)

]
≤ negl(λ).

Hybrid H0
0 : This hybrid is identical to the experiment IND0(〈C,R〉CCA,A,O, λ, z) where

the man-in-the-middle A receives a commitment to v0 on left. We view H0
0 (and all other

subsequent hybrids) as a machine.

Lemma 4.3.1. The invariant condition holds for H0
0 .

Proof. Observe that Stage-1 and Stage-2 together are referred to as CombinedCom; this
defines a secure statistically binding commitment scheme since it consist of a sequential
execution of two commitments (ExtCom and ENMC) which commit to the same value α̃. We

5If the transcript can be decommitted to more than one value or no value at all, we define β̃ = ⊥.
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show that if the invariant condition does not hold for H0
0 then, we can construct a PPT

adversary Ahid to break hiding of CombinedCom. More specifically, Ahid incorporates H0
0 ; it

sends two random values (α̃0, α̃1) to an outside committer of CombinedCom; it then starts
to run machine H0

0 with the following exception:

– It does not run the exponential time oracle or the Stage-1 and Stage-2 executions inter-
nally; instead it forwards the message from the outside committer to complete these two
stages.

– It halts once the left Stage-2 execution is done, outputting the its view ViewAhid
(which

is the same as the view of H0
0 but “truncated” at the end of the right Stage-2).

Next, we construct a distinguisher D who incorporates A (and hence H0
0 ); it gets as input

the view ViewAhid
and proceeds as follows: D continues the execution of H0

0 from the state
where A halts, denoted st. Observe that D has all the information it needs to continue
this execution. D halts at the end of Stage-3 on right. If A completes right Stage 3
successfully, D runs the extractor of ExtCom to extract the committed value. By definition,
if the invariant condition does not hold, it follows that A commits to valid value such that
β̃ = α̃ with noticeable probability ε (for infinitely many λ), and therefor (by using standard
averaging argument to account for good values of st) D learns α̃ in expected PPT time. This
violates hiding of CombinedCom.

Hybrid H0
1 : This hybrid is identical to H0

0 , except that it does not run the exponential time
oracle O; instead, if the right executions are accepting, it learns the committed value ṽ by
extracting it from WIAoKk+1 (on right). If extraction fails, the extracted value is assumed
to be ⊥. Note that H0

1 is expected PPT.
Observe that H0

1 and H0
0 have identical executions up until the A finishes its execution

on right. Therefore, invariant condition holds in H0
1 . Consequently, by properties of the

extractor for WIAoK, this hybrid always (i.e., with probability 1) extracts a valid witness
(which includes the committed value) in expected PPT time. Thus, H0

1 andH0
0 are identically

distributed.

Hybrid H0
2 : This hybrid is identical to H0

1 , except that whenever the left ENMC is accepting,
H0

1 extracts the committed value α from the left ENMC. If extraction fails, H0
1 outputs ⊥

and halts; otherwise it continues as H0
1 .

The outputs of H0
1 and H0

2 differ only when extraction fails, which happens with negligible
probability. Therefore the two hybrids have statistically close outputs, and consequently, the
invariant condition also holds in H0

2 .

Remark 4.3.1. The above proofs for both indistinguishability and invariant condition are
independent of A’s scheduling, and work for the non-synchronizing case.

Hybrid H0
3 : This hybrid is identical to H0

2 , except that H0
3 sets β = α (the value extracted

from the left ENMC in H0
2 ) in Stage-3 ExtCom on left.

First, note that if the invariant condition holds in H0
3 , the indistinguishability of H0

2

and H0
3 follows directly from the hiding property of left ENMC. The proof of the invariant
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condition for this hybrid is rather involved. We prove it in Lemma 4.3.2 towards the end.
In the following, let us continue to assume that the invariant condition holds in H0

3 .
We will now define a number of hybrids in sequence:

– Hybrid H0
3+i (i ∈ [k]): This hybrid switches from proving statement (1) to statement (2)

in WIAoKi (and also therefore switching from using the “original” witness to the “fake”
one).

Indistinguishability. We note that if the invariant condition holds in H0
3 , it should also

hold in H0
3+1 through H0

3+k. This is because for each i ∈ [k], H0
3+i and H0

3 are identical
up to the end of Stage-4, and any changes after this stage do not affect the invariant
condition in the synchronizing case. Now, if the invariant condition holds in H0

3+i (i ∈ [k]),
indistinguishability between H0

3+i−1 and H0
3+i for every i follows directly from the WI

property (since the extraction only happens from WIAoKk+1).

– Hybrid H0
3+k+1: This hybrid is identical to H0

3+k, except that instead of extracting the
“witness” (i.e., the committed value ṽ) from WIAoKk+1, it extracts from WIAoK1 (which
are both on the right).

Indistinguishability. Hybrids H0
3+k and H0

3+k+1 proceed identically until the extraction is
performed on right. Therefore, the invariant condition holds in H0

3+k+1. Consequently, by
the knowledge soundness of WIAoK, H0

3+k and H0
3+k+1 are statistically close. This implies

both that the invariant holds in H3+k+1, and also that the outputs in hybrids H3+k and
H3+k+1 are indistinguishable.

– Hybrid H0
3+k+2: This hybrid is identical to H0

3+k+1 except that it switches from the
original witness to the trapdoor witness (i.e., values and randomness corresponding to
β = α) in the left WIAoKk+1.

Indistinguishability. The proofs of both indistinguishability as well as the invariant condi-
tion are exactly as for H0

3+k (or any of the other similar hybrids).

Note that in hybrid H0
3+k+2, we can safely substitute v0 with v1(thanks to the hiding

of Com). Then we can build a sequence of hybrids similar to the above one, but in the
reverse order, to finally reach the real execution IND1(〈C,R〉CCA,A,O, n, z). More formally,
for j = 0, . . . , 3 + k+ 2, define hybrid H1

j analogously to hybrid H0
j (by replacing v0 with v1

on left).
First, note that the indistinguishability of H0

3+k+2 and H1
3+k+2 follows from that of Com

since these hybrids do not use the “real witness” (i.e., the committed values) in their ex-
ecutions and they are both expected PPT. Then, using the same arguments as above, we
conclude that H1

3+k+2 and H1
0 are computationally indistinguishable and invariant condi-

tion holds in each of them. This eventually finishes the proof for 1-1 CCA security against
synchronous adversaries.

We now prove the following lemma, used earlier in the proof.

Lemma 4.3.2. The invariant condition holds for (hybrid) machine H0
3 .

Proof. We reduce the veracity of the invariant in this experiment to the (synchronous) non-
malleability of ENMC. Recall that A is the adversary for our CCA1:1 scheme in H0

3 . We
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construct two machines to violate non-malleability of ENMC: a man-in-the-middle adversary
ANMC who attempts to commit a related value, and a corresponding distinguisher DNMC who
distinguishes the (joint) distribution of values committed by ANMC on right.

At a high level, we cannot directly reduce to non-malleability of ENMC due to the pres-
ence of ExtCom in Stage-1 which commits to the same value as ENMC. Since ExtCom is not
non-malleable, adversary A may be able to rely on this commitment to create related values
on right in our protocol. Specifically, in Stage-3, when the hybrid sets β = α on left, A
may succeed in violating the invariant condition since Stage-3 uses the (possibly malleable)
ExtCom. It is also not sufficient to replace the Stage-1 ExtCom with a non-malleable com-
mitment since committed value is well defined only when both stages (1 and 2) commit to the
same value. This is a relation over two values but ENMC is not concurrently non-malleable.
We therefore proceed in a different manner where adversary ANMC will simulate stage 1 on
right (by commiting one of the two random values of its choice) while receiving an ENMC
commitment from outside for Stage-2. This will simulate the conditions of hybrid H0

3 with
noticeable probability; and thus, if the invariant condition does not hold, the distinguisher
can extract the committed value β̃ to violate hiding of ENMC on right.

Adversary ANMC. This adversary participates in the non-malleability experiment w.r.t.
commitment scheme ENMC. It does so by proceeding exactly as hybrid H0

3 internally while
interacting with an outside committer as follows:

– ANMC picks two random values a0 and a1 and sends them to the outside committer of
ENMC. (Note that the outside committer will commit to one of a0 or a1, but ANMC does
not know which one).

– ANMC also starts the execution of adversary A internally, proceeding exactly as H0
3 except

that in Stage-1 ExtCom on right, it commits to a randomly chosen value from {a0, a1}.
We denote this value by ab where b is a random bit.

– Next, in Stage-2, ANMC does not run the ENMC internally. Instead, it sends all messages
of the external (ENMC) committer as Stage-2 messages of the right session for the internal
adversary A. Likewise, the messages of the left side stage 2 are sent to an outside receiver
of ENMC.

– ANMC halts at the end of Stage-2. For future reference, let state be state of machine ANMC

at this point.

Note that if outside committer commits to ab, the state state of ANMC is distributed identically
to that of hybrid H0

3 at the end of stage 2. Let us now describe the distinguisher DNMC.

Distinguisher DNMC. The input to the distinguisher is a pair (m,View) distributed either as
MIMANMC

ENMC (a0, λ, z) or MIMANMC
ENMC (a1, λ, z) where z is an arbitrary advice string for algorithm

ANMC. Note that m is the value committed by ANMC and View is the joint view of both
executions it participates in. The distinguisher incorporates ANMC and proceeds as follows:

– By definition, View includes the joint view of ANMC, which in turn contains the view of
A and hence state state as well as (a0, a1). Recall that hybrid H0

3 extracts the value
committed in the left ENMC, denoted α2. However, this extraction cannot be performed
by ANMC as the ENMC execution now happens between ANMC and the external challenger
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for the non-malleable game, who cannot be rewound. But notice that α2 is exactly equal
to m; looking ahead, the DNMC will finish emulating H0

3 using m in place of the extracted
α2.

– DNMC defines the following machine C∗: C∗ incorporates machine ANMC and has values
(m,View) hardwired. It starts the machine ANMC from state state and continues to proceed
exactly as H0

3 in the next stage. In particular, it does not extract anything from ENMC
and simply uses m in its place. That is, it sets β = m in the Stage-3 execution of
ExtCom on left. Furthermore, C∗ forwards all messages corresponding to right stage 3 to
an external receiver of ExtCom. Note that C∗ is simply a valid committer of ExtCom.

– DNMC runs C∗ interacting with it as an honest receiver. If the commitment is accepting,
it extracts the value β̃ committed by C∗ (using the extractor of ExtCom).

– If β̃ = a0, it outputs 0; if β̃ = a1, it outputs 1. Otherwise, it outputs a random bit.

Let ν := ν(λ) denote the probability that the claim is false, i.e., the invariant condition

does not hold in this hybrid: ν = Pr[β̃ = α̃] where the probability is taken over transcripts
(suppressed in the notation) sampled by H0

3 . Let us calculate the advantage |∆| of DNMC

where

∆ := Pr
[
D
(

MIMANMC
ENMC (a0, λ, z)

)
= 1
]
− Pr

[
D
(

MIMANMC
ENMC (a1, λ, z)

)
= 1
]

For succinctness, let Xλ,z(a) := MIMANMC
ENMC (a, λ, z). We have,

Pr
[
DNMC

(
MIMANMC

ENMC (a0, λ, z)
)

= 1
]

= Pr [DNMC (Xλ,z(a0)) = 1]

=
1

2
·
(

Pr [DNMC (Xλ,z(a0)) = 1|b = 0]︸ ︷︷ ︸
:=z0

+ Pr [DNMC (Xλ,z(a0)) = 1|b = 1]︸ ︷︷ ︸
:=δ0

)

Observe that 1−z0 = Pr [DNMC (Xλ,z(a0)) = 0|b = 0]. Note that in this equation, since b = 0,
the input to DNMC has distribution identical to that of stage 1 and 2 on right in the execution
H0

3 . We split the probability based on the invariant condition (i.e., whether β̃ = α̃0). That
is,

1− z0 = Pr
[
DNMC (Xλ,z(a0)) = 0 ∧ (β̃ = α̃0)|b = 0

]
+ Pr

[
DNMC (Xλ,z(a0)) = 0 ∧ (β̃ 6= α̃0)|b = 0

]
= ν + (1− ν) ·

(
1

2
− 2−λ

)
⇒ z0 = 1/2− ν/2 + negl(λ).

where the first term (of the second equality above) comes from our assumption about the
invariant condition, and in that case, the extractor always extracts α̃0 and hence outputs 0;
otherwise (i.e., with 1− ν probability), it outputs a random guess; note that in this case it

is possible that β̃ = α̃1 (the other string) in which case DNMC will output the “wrong” guess
1 but since α̃1 is outside the view of (internal) A, this happens only with probability 2−λ.
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We use an analogous calculation for the case when outside committer commits to a1.

Pr
[
DNMC

(
MIMANMC

ENMC (a1, λ, z)
)

= 1
]

=
1

2
·
(

Pr [DNMC (Xλ,z(a1)) = 1|b = 1]︸ ︷︷ ︸
:=z1

+ Pr [DNMC (Xλ,z(a1)) = 1|b = 0]︸ ︷︷ ︸
:=δ1

)
where

z1 = Pr
[
DNMC (Xλ,z(a1)) = 1 ∧ (β̃ = α̃1)|b = 1

]
+ Pr

[
DNMC (Xλ,z(a1)) = 1 ∧ (β̃ 6= α̃1)|b = 1

]
= ν + (1− ν) ·

(
1

2
− 2−λ

)
⇒ z1 = 1/2 + ν/2− negl(λ).

Finally, we observe that δ0 = δ1 since both of these cases correspond to committing two
random and independently chosen strings in stage 1 and 2 on right respectively; in other
words, the input to DNMC in these cases are identically distributed. Putting everything
together, we obtain |∆| = ν/2 + negl(λ). This violates the non-malleability of ENMC if ν is
not negligible.

4.3.2 Proof for Non-synchronous Adversaries

We first define some terms and notations.

Alignments and Free Slots. Recall that ExtCom has exactly 3-rounds. Let (m1,m2,m3)
and (m̃1, m̃2, m̃3) be messages of stage-1 ExtCom on left and right respectively. We say
that stage-1 ExtCom on left and right are aligned in a schedule, if m1 follows immediately
after m̃1, m̃2 follows immediately after m2, and finally m3 follows immediately after m̃3.
We define the aligning of stage-2 ENMC on left and right, as well as stage-3 ExtCom on
left and right, analogously. We refer to the last two messages of ExtCom and ENMC as
slots. Next, recall that CombinedCom refers to the sequential execution of stage 1 and stage
2 (see Protocol 4.3.1); since the last message of stage 1 and first message of stage 2 can
be sent together as a single message, and both stages commit to the same value, protocol
CombinedCom is a 5-round commitment scheme which has 2 slots (one for ExtCom and one for
ENMC). We say that left and right executions of CombinedCom are aligned if its component
stages 1 and 2 are aligned with their left and right counterparts respectively.

Consider an arbitrary schedule of left and right sessions. A free slot of left CombinedCom
is a slot that does not contain any message of the CombinedCom on right; it may however
contain other protocol messages. It is not hard to see that by definition of alignment (and
our modeling that the honest parties immediately respond with their next message) it follows
that if left and right CombinedCom sessions are not aligned in a schedule, there must exist a
free slot on left. which does not contain any message of the right execution of CombinedCom.
The existence of free slot is not required until later in the proof; we will do a case-by-case
analysis to demonstrate that such a free slot must exist.
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Hybrids. We now define the hybrids for the non-synchronous case following roughly the
same structure as the synchronous case. The new hybrids will be called NewH0

i for i =
1, . . . , 3 + 2(k + 1).

Hybrid NewH0
0: Identical to H0

0 .

Hybrid NewH0
1: Identical to H0

1 .

Hybrid NewH0
2: Identical to NewH0

1 except that it extracts a value α∗ on left as follows:
if the left and right executions of CombinedCom are not aligned, it extracts from the free
slot. Such a free slot always exists by definition. Otherwise, it proceeds exactly as H0

2 and
extracts from ENMC.

We remark that ifA chooses to commit different values in stage-1 and 2 on left, depending
upon which slot is free, extractor may get different values for α∗.

Hybrid NewH0
3: Identical to NewH0

2 except that it sets β = α∗.
Now, for i ∈ [k + 1], we define:

Hybrid NewH0
3+(2i−1): Identical to the previous hybrid, except that instead of extracting

the “witness” (i.e., the committed value ṽ) as in the previous hybrid, this hybrid extracts
from WIAoKj on the right where j ∈ [k] is an index such that WIAoKj does not contain any
message of left WIAoKi. Note that such an index j must exist: the left WIAoKi execution
has but k messages, and each message can occur within at most one WIAoK execution on
the right (recall that the right WIAoK executions are all sequential, so they cannot overlap
by definition), and we have k + 1 WIAoK executions on the right.

Hybrid NewH0
3+(2i): Identical to the previous hybrid except that it switches from the original

witness to the trapdoor witness (i.e., values and randomness corresponding to β = α∗) in
the left WIAoKi.

Recall that from Remark 4.3.1, the proofs for indistinguishability and the invariant condi-
tion remain unchanged up to hybrid NewH0

2. We now prove similar claims for the remaining
hybrids.

Indistinguishability of NewH0
2 and NewH0

3: The main concern here is if A overlaps the left
stage-3 ExtCom with the right WIAoKk+1, then since these hybrids extract from WIAoKk+1

via rewinding, we cannot rely directly on the hiding of left stage-3 ExtCom. This is easy to
fix by considering some intermediate hybrids where we first switch to extraction from a ‘free’
WIAoK on the right and later switch back. We describe the intermediate hybrids below.

– Hybrid NewH0
2,1: This hybrid is identical to NewH0

2 except that if last two messages of
stage-3 ExtCom on left appear after the first message of WIAoKk+1 on right, then this hy-
brid performs extraction from a ‘free’ WIAoK session WIAoK∗ (instead of WIAoKk+1 used
by the previous hybrid).

Hybrids NewH0
2 and NewH0

2,1 are statistically close since they only differ when the extractor
fails, which happens with negligible probability. Thus the invariant condition holds for
H0

2,1 since it holds for H0
2 .
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– Hybrid NewH0
2,2: This hybrid is identical to NewH0

2,1 except that it sets β = α∗.

In hybrid NewH0
3, we will show that (a) NewH0

2,2 is statistically close to NewH0
3, and (b)

invariant condition holds in NewH0
3. It follows that invariant condition must also hold in

this hybrid.

We now prove the indistinguishability of NewH0
2,2 and NewH0

2,1. This follows directly from
the hiding of stage-3 ExtCom since if it does not then we can define a machine B to
break hiding of ExtCom as follows: B receives ExtCom to either 0λ or α∗ and uses it as
the stage-3 commitment. Observe that this machine does not rewind the outside ExtCom
when performing extraction from right side WIAoK: this is because stage-3 ExtCom on
left has only 3 rounds, and thus, the last two messages of this stage can only be contained
in one of the WIAoKi executions on the right—so all the others are always “free”. The
hybrid only rewinds and extract from a free WIAoK.

– Hybrid NewH0
2,3: This hybrid is identical to the previous hybrid except that it always

extracts from WIAoKk+1 on right.

It is straightforward to see that NewH0
2,2 is statistically close to the previous hybrid and

thus invariant condition also holds.

Observe that NewH0
2,2 is in fact the original hybrid NewH0

3. Therefore, NewH0
3 and NewH0

2,2

are also statistically close as claimed above.

Invariant Condition in NewH0
3. Recall that this hybrid involves setting β to be the

extracted value. It seems reasonable to expect that the invariant condition will depend
on the relationship between the left and right executions of the stage 3 ExtCom (this makes
intuitive sense because we expect a cheating adversary to gain in success by possibly ‘mauling’
this changed β and trying to violate the invariant). Accordingly, consider the following three
cases involving the relative positions of the left and right stage 3 ExtCom executions:

– Right stage 3 ExtCom occurs before left stage 3 ExtCom: If this is the case (see
Figure 4.1a), then it must be that the first message of the right stage 3 ExtCom is sent
before any message of the left ExtCom is sent. Note that that the first message of ExtCom
binds the commitment to the underlying value, this implies that the right stage 3 ExtCom
cannot possibly commit to a value that depends on the left ExtCom. Thus the invariant
holds in NewH0

3 for such schedulings by the same argument as used for NewH0
2,2 (and

therefore NewH0
2).

– Right stage 3 ExtCom aligns with left stage 3 ExtCom: Note that this hybrid (just
as NewH0

2) uses a conditional extraction strategy on the left. Accordingly, we consider the
following two subcases:

∗ Left ENMC aligns with right ENMC: In this case, our reduction to non-malleability
of ENMC (arguing the validity of the invariant in H0

3 in the synchronous case) again
applies (note that in this case, all of stage 0 through stage 3 is aligned on the left and
the right, so that A is synchronous up till stage 3, and our argument in that case makes
no assumptions about what happens after that stage).
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(a) Right ExtCom occurs before left ExtCom (b) Right ExtCom occurs after left ExtCom

(c) Left CombinedCom occurs before right

CombinedCom

(d) Left CombinedCom occurs after right Com-

binedCom

Figure 4.1: Various representative schedulings considered for invariant in NewH0
3

∗ Left ENMC does not align with right ENMC: Recall that we had defined Combined-
Com in Protocol 4.3.1. We claim in this case that if the left and right ENMC executions
are not aligned, then there must be a ‘free slot’ in the left CombinedCom (i.e., one of
stage 1 ExtCom or ENMC on the left). There are 4 possible representative schedulings,
and we deal with each separately.

1. Left CombinedCom ‘occurs before’ right CombinedCom: By this we mean that
the left CombinedCom both starts and ends before the right CombinedCom (see Fig-
ure 4.1c). In this case, the first slot in the left stage-1 ExtCom is free since no slot
in CombinedCom on the right occurs within it.

2. Left CombinedCom ‘occurs after’ right CombinedCom: By this we mean that
the left CombinedCom both starts and ends after the right CombinedCom (see Fig-
ure 4.1d). In this case, the final slot in the left stage-2 ENMC is free since no slot in
CombinedCom on the right occurs within it.

3. Left CombinedCom ‘occurs inside’ right CombinedCom: By this we mean that the
left CombinedCom both starts after and ends before the right CombinedCom. This
implies that the left stage-1 ExtCom ends after the right one, and the left ENMC
starts after the right one. Then both the final slot in the left stage-1 ExtCom and
the first slot in the left stage-2 ENMC are free.
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4. Left CombinedCom ‘envelopes’ right CombinedCom: By this we mean that the
left CombinedCom both starts before and ends after the right CombinedCom. Then
both the first slot in the left stage-1 ExtCom and the final slot in the left stage-2
ENMC are free.

We claim that if the invariant condition is violated in this case, then we can break
hiding of CombinedCom. In fact, we can apply the same proof as for Lemma 4.3.1,
noting that the reduction is unchanged because we do not rewind any slot in the right
CombinedCom (since we extract from a free slot on the left).

– Right stage 3 ExtCom occurs after left stage 3 ExtCom: The argument presented for
the previous case also applies to this one (see Figure 4.1b).

– Right stage 3 ExtCom ‘occurs inside’ left stage 3 ExtCom: In this case again the
first message for the right stage-3 ExtCom is sent before the corresponding first message
for the left stage-3 ExtCom. So our argument for the first case applies here too.

– Right stage 3 ExtCom ‘envelopes’ left stage 3 ExtCom: Once again, we can use our
argument for the case where the left and right stage-3 ExtCom sessions are aligned, without
change.

Indistinguishability of NewH0
3+(2i−1) and NewH0

3+(2i): These hybrids are statistically close
since they only differ when the extractor fails, which happens with negligible probability.
This implies that the invariant condition must also hold in the latter hybrids. Indistinguisha-
bility of outputs follows immediately.

Note that this argument also serves to prove indistinguishability between NewH0
3 and

NewH0
4, in particular.

Invariant Condition in NewH0
3+(2i): We consider two cases: if the execution of the stage 3

ExtCom on the right is aligned with or occurs after that on the left, then we can resort to the
same argument as for NewH0

3 (for the corresponding schedulings). If not, then we can use
the corresponding argument showing the invariant for H0

3+i in the synchronous case, since
that relies only on the right ExtCom occurring before or during the stage 3 ExtCom on the
left.

Indistinguishability of NewH0
3+(2i) and NewH0

3+(2i+1): This follows directly from the wit-
ness indistinguishability of WIAoKi since if it does not then we can define a machine B that
breaks witness indistinguishability of WIAoK as follows: B receives prover messages proving
either statement (i) (using real witness) or (ii) (using trapdoor witness) and uses it as the
WIAoKi messages on the left (it forwards the replies of A outside to this prover). Observe
that this machine does not rewind the outside WIAoK execution when performing extrac-
tion from right side WIAoK: this is because we have ensured that the left WIAoKi and the
right WIAoKj we extract from do not overlap. We conclude that these hybrids are indeed
indistinguishable.

Thus we show that the outputs of hybrids NewH0
0 and NewH0

3+(2k+3) are indistinguishable.

As before, we can define an analogous set of hybrids NewH1
0, . . . ,NewH1

3+(2k+3) where hybrids
commit to v1 on the left. Further, once again we observe that the indistinguishability of
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NewH0
3+(2i+1) and NewH1

3+(2k+3) follows from the hiding of Com since these hybrids do not
use the “real witness” (i.e., the committed values) in their executions and they are both
expected PPT (this is the same argument as in the synchronous case, because it does not
depend on the adversary’s scheduling: this commitment is sent at the start of the execution
on the left and takes only one round, hence cannot be rewound by the adversary). This
finishes the proof of the non-synchronous case, and hence that of Theorem 4.3.1.

4.4 Our Black-Box CCA Commitment

In this section, we describe a fully black-box instantiation of our commitment scheme. We
first describe black-box versions of all components of our protocol which involve a proof. The
final construction follows by simply plugging in the black-box components into our protocol.
To this end, we require an instantiation of a WIAoK scheme that can handle proofs over
committed values in a black-box manner and is consistent with commitments performed
in multiple stages. To achieve this, we also need a new instantiation for our extractable
commitment scheme.

4.4.1 Black-Box Commit-and-Prove ZKAoK

There are several formulations of “black-box commit-and-prove” protocols in the litera-
ture, usually tailored to their intended applications. For our purposes, we need a black-box
commit-and-prove that, has the argument-of-knowledge property (i.e., an appropriate wit-
ness can be extracted from the prover), as well as the ZK property. We will also need the
ability to give proofs over multiple commitments, each of which may have been performed
independently at different times. But the proof, given the witnesses for each of these exe-
cutions, should be able to prove any predicate φ in zero-knowledge; furthermore sequential
composition of a constant number of such proofs (for potentially different predicates) should
be zero-knowledge. To capture these properties, we start by defining the primitive we need
below.

Definition 4.4.1. A black-box s-commit-and-prove ZKAoK scheme consists of a pair of pro-
tocols (BBCom, BBProve) executed between a pair of PPT machines P and V . BBCom is
a statistically binding commitment scheme, and BBProve is an interactive argument system.
These protocols are executed in the following stages:

– Commit Stage: P and V invoke BBCom(x) such that at the end of this protocol, P is
statistically committed to the value x.

If desired, P can commit to up to s values by invoking s independent BBCom instances.
For i ∈ [s], we use τi to denote the transcript from BBCom(xi) execution. P stores private
state state.

– Prove Stage: P and V take the transcripts {τ1, . . . , τs} and a predicate φ as common
input. P takes state as its private input. P proves to V using BBProve that there exists
some values (x1, . . . , xs) such that {τ1, . . . , τs} are valid commitments to them, and also
φ(x1, . . . , xs) = 1.
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We require that the following properties are satisfied:

– Black-Box. Both stages only require black-box access to cryptographic primitives.

– Completeness. If P and V are honest, then V accepts the proof with probability 1.

– Zero-Knowledge. For every PPT verifier V ∗, there exist an (expected) PPT simulator
Sim such that for all (x1, . . . , xs), for every polynomial time predicate φ, for every auxiliary
input z ∈ {0, 1}∗, it holds that

SimV ∗(z, φ)
c
≈ {〈P (x1, . . . , xs), V

∗(z)〉}φ

where 〈P (x1, . . . , xs), V
∗(z)〉φ denotes the view of V ∗ at the end of both the Commit Stage

and the Prove Stage.

– Argument of Knowledge. There exists an (expected) PPT oracle algorithm E such that
for every PPT machine P ∗ aand every polynomial time predicate φ, and every auxiliary in-
put z ∈ {0, 1}∗, if 〈P ∗, V 〉φ constitutes an accepting view of V , with corresponding commit
stage transcripts (τ1, . . . , τs, E

P ∗) will output (x̃1, . . . , x̃s) such that φ(x̃1, . . . , x̃s) = 1 and
it is statistically impossible to decommit (τ1, . . . , τs) to any tuple other than (x̃1, . . . , x̃s).

Some remarks are in order. First, the prover can sequentially prove multiple predicates
φ1, . . . , φk over the same commit stage transcripts (τ1, . . . , τs) (or any subset of these). The
zero knowledge property of this sequential composition is implied by the auxiliary input
nature of the zero knowledge definition above. Furthermore, even though the simulator
simulates the commit stage as well, the presence of such a simulator trivially guarantees
witness indistinguishability of the proof stage as well; that is, if there are multiple witnesses
for (τ1, . . . , τs), polynomial time verifiers cannot tell which witness was used in the proof
stage.

We remark that known black-box commit-and-prove protocols (such as in [KOS18]) do
not directly satisfy Definition 4.4.1. In fact, it is unclear if the construction in [KOS18] can
be easily modified for our purposes. At a high level, this is since:

(a) there is no stand-alone “commitment stage”, by the end of which the committer is sta-
tistically bound to some (committed) value; this is because [KOS18] considers “commit-
and-prove” as a single object so that at the end of the execution, it is guaranteed that the
committer is committed to a value m such that φ(m) = 1; we need the guarantee that
m is already defined after a “commitment stage”, which will be used in a “proof stage”
that happens latter;

(b) it is also not clear how to extend [KOS18] to support multiple commitments and multiple
proofs; in fact it seems that it can only support one proof since two valid responses from
the prover in their protocol may lead to extraction of the committed value.

4.4.1.1 Constructions against Honest Verifiers

We note that the “MPC-in-the-head” construction in [IKOS07] already achieves the honest-
verifier version of Definition 4.4.1. In the following, we recall their protocol ΠIKOS. This
protocol makes use of the following primitives:
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– A statistically-binding commitment scheme Com (e.g. Naor’s commitment [Nao90]);

– (n+ 1, t)-perfectly verifiable secret sharing scheme ΠVSS = (VSSShare,VSSRecon)

– A t-secure MPC protocol in the malicious model.6

We will pick our parameters such that t is a constant multiple of the security parameter λ,
and n is a constant multiple of t. The prover of ΠIKOIS first commits to a value x and then
prove a predicate φ on x. It consists of the following two stages:

Commit Stage (IKOS-Com(x)): To commit to a value x, the prover P runs an MPC
protocol “in his head” where one dealer and n parties runs a (n+ 1, t)-VSS protocol such
that each party holds one VSS share of x in the end. P commits to the views of each
party (separately) using Com.

Prove Stage (IKOS-Prove(φ)): This consists of the following steps:

(1) To prove that a predicate φ is satisfiable, the prover asks the n parties “in his head”
to execute an MPC protocol where each party learns the value φ(x) as the output
(note that this can be done as each party holds a VSS share of x at the end of
BBCom(x)). When the computation is finished, the prover commits to the views
of each party.

(2) The verifier sends a random subset ch ⊂ [n] of size t as his challenge.

(3) The prover then decommits to the views (in both BBCom(x) and the computa-
tion of φ(x)) of the parties specified by ch. The verifier accepts only if all the
decommitments are valid and all the views are consistent as per ??.

Remark 4.4.1 (Committing to Multiple Strings). In the above, the commit-and-prove is
performed on a single value x. It can be extended to multiple values {x1, . . . , xs} by invok-
ing BBCom on each of them independently (where s is polynomially related to the security
parameter λ). In the proving stage, simply run the MPC protocol w.r.t. the functionality
φ(x1, . . . , xs). This construction is due to Goyal et al. (in the works [GLOV12, GOSV14]).

4.4.1.2 Security against Dishonest Verifiers

The above ΠIKOS protocol only achieves honest-verifier ZKAoK property. To make it secure
against malicious verifiers (and also to prevent selective-opening attacks), [GLOV12] ask the
verifier to commit its challenge ch before BBCom(x) starts. However, this approach only
gives us a zero-knowledge protocol, which does not have the AoK property.

Remark 4.4.2. We notice that [IKOS07] also presented a constructions that achieves ZKAoK
against dishonest verifiers. However, they did that by invoking polynomially-many instances
of Blum’s coin-tossing protocol [Blu82] sequentially. It does not satisfy our needs as we aim
to have a constant-round construction.

To satisfy our purpose, we show how to make above construction to be a ZKAoK based

6In fact, we only need the MPC protocol to be t-private in the semi-honest model and (perfectly or
statistically) t-robust in the malicious model (as defined in Definition 2.7.5). See [IKOS07] for more details.
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Protocol 4.4.1: Black-Box Commit-and-Prove ZKAoK ΠBB
ZKAoK

This protocol, denoted by ΠBB
ZKAoK, makes use of the same Com, ExtCom, ΠVSS and t-secure

MPC protocol (with the same parameter settings) as in ΠIKOS. It consists of the following
two stages:

Commit Stage (BBCom): this is the same as in protocol ΠIKOS. We remark that to
commit to s values {x1, . . . , xs}, P and V invokes IKOS-Com(xi) for each i ∈ [s] separately.

Prove Stage (BBProve(φ)): This stage consists of the following steps:

(1) Same as step (1) of protocol IKOS-Prove (i.e., Prove Stage of ΠIKOS). We re-
mark that the MPC is used to compute the functionality on s committed values
φ(x1, . . . , xs).

(2) In this stage, P and V execute a coin-tossing to decide a value ch as V ’s challenge:

(a) V samples a random string ch1
$←− {0, 1}poly(λ), and commits to ch1 using the

standard ExtCom (Protocol 2.3.1).

(b) P sends a random string ch2
$←− {0, 1}poly(λ).

(c) V sends ch2 along with the corresponding decommitment.

We remark that both parties agree on a size-t subset ch ⊂ [n], determined by the
randomness ch1 ⊕ ch2.

(3) Same as Step (3) of IKOS-Prove. We remark that both parties use the ch defined
in last step to do the corresponding execution.

on a modified approach of [Lin13].7 At a high level, we substitute the verifier’s challenge ch
in the above honest-verifier construction by a coin-tossing between P and V , whose result
will be “interpreted” as the verifier’s challenge to finish the remaining execution. This coin-
tossing step is based on a ExtCom protocol, such that a ZK simulator can extract the verifier’s
share, thus bias the coin-tossing result to its advantage to finish the execution. In addition,
since the coin-tossing happens after the prover’s first message, a knowledge extractor can
be constructed by rewinding the prover with different queries (which is done by sending
different shares in the coin-tossing) to extract the witness, thus obtains AoK property. We
show our construction in Protocol 4.4.1.

The security of Protocol 4.4.1 is established by the following lemma.

Lemma 4.4.1. The protocol ΠBB
ZKAoK is a black-box commit-and-prove zero-knowledge argu-

ment of knowledge (Definition 4.4.1).

Proof. First, note that BBCom is a statistically-binding commitment due to the statistical
binding property of the underlying Com and the reconstruction guarantees of VSS scheme.

7The objective in [Lin13] is to construct a proof (of knowledge) system in (optimal) five rounds which re-
quires the stronger assumption of two-round statistically hiding commitments. We can avoid this assumption
since we only seek a constant-round argument system
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Also, completeness and black-box property are immediate. Soundness follows from the AoK
property,8 which will be proved in the following. The ZK and AoK properties are achieved
in the standard manner, using rewinding, to bias the coin-toss and issuing new challenges
respectively. A more detailed sketch is provided below:

Zero-Knowledge. Our ZK simulator Sim can be built in the following way. For the commit-

ment stage, Sim commits to 0-strings (i.e. it sets x1 = . . . = xs = 0λ ). For the proof stage,
Sim proceeds as follows: it samples a random challenge ch′ ⊂ [n], and invokes the ΠIKOS

simulator HVSim on ch′ to get the simulated ZK′1 and ZK′3 messages. It then executes the
protocol using the honest prover’s strategy up to the end of step (2)-(a) of the Prove Stage.
The simulator first extracts the value ch1 committed by V ∗ in ExtCom, and then sends a
string ch2 as the step (2)-(b) message, such that ch1 ⊕ ch2 is the randomness deciding the
challenge ch′. Finally, it finishes the protocol with ZK′3 as the step-(3) message. It is obvious
that Sim runs in (expected) polynomial time. The indistinguishability of the simulated view
and the view from real execution can be proved using standard techniques.

AoK Property. Our knowledge extractor E works during the Prove Stage, and can be built
as follows. E executes the protocol using the honest verifier’s strategy until the end. If P ∗

gives a convincing proof (otherwise, E aborts), E rewinds P ∗ to the beginning of step-(2)
and finish the protocol from there with fresh randomness. E repeats this procedure until it
gets to accepting transcript with different step-(2) coin-tossing results for sufficiently many
challenges (e.g., t + 1 if that is the threshold of our VSS). By the property of VSS, E
can recover the witness x from these (sufficiently many) VSS shares. One caveat here is
that P ∗ may try to bias the coin-tossing results to a single or a small set of challenges so
that it manages to successfully complete the proof even if it does not “know” a witness.
However, observe that doing so reveals information about the committed value in ExtCom
which compromises hiding.

Remark 4.4.3 (Multi-Proof Extension). In the Prove Stage of Protocol 4.4.1, P proves
a single predicate φ. Actually, this scheme allows P to give proofs to (constantly) many
predicates w.r.t the same commitments in the Commit Stage. Notice that the security
of this above construction is guaranteed once we set t to be a constant fraction of n.9 To
support k (k is some constant) proofs, we simply use a (kn + 1, kt)-VSS schemes to run
BBCom. Later in the Prove Stage, we run the proof for each φ sequentially, where we still
open t views (i.e. the coin-tossing result ch is still a size-t random subset of [kn]) in BBCom
for the proof of each φ.

4.4.1.3 A “Proof-Compatible” Extractable Commitment

As mentioned at the beginning of this section, we want to make our protocol 〈C,R〉CCA
(Protocol 4.3.1) black-box using the black-box commit-and-prove scheme to conduct the
Stage-0, Stage-3 commitment and Stage-5 proofs. Note that the Stage-3 commitment should

8We remark that the standard definition of ZKAoK ([Gol01, Definition 4.7.2]) treats soundness and AoK
property separately. Although there are definitions that build soundness directly into the AoK property,
treating these properties separately is arguably the better choice (see [BG93]). In the current proof, AoK
does imply soundness as our extractor does not assume that x ∈ L.

9This is inherited from the original protocol ΠIKOS. See the soundness proof in [IKOS07] for more details.
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be extractable. But in our commit-and-prove protocol, the commitment BBCom does not
support extraction. Therefore, we have to modify the committing stage of ΠBB

ZKAoK such that
it becomes a extractable commitment, while still being compatible with the (black-box)
proving stage. Fortunately, this can be done in the following way.

Observe that in Protocol 4.4.1, if we commit to a single value x in the committing stage,
and use the identity predicate which outputs 1 on any valid input10 in the proving stage,
this protocol is already an extractable commitment to x. The (statistical) binding property
follows from that of BBCom(x). The computational hiding property follows from ZK. The
extractability follows from AoK property. Moreover, as discussed in Remark 4.4.3, we can
set the parameters properly such that after the proof of φ(x) ≡ 1 there are still enough
unopened views (in BBCom(x)) which can be used to support more proof stages later.

We refer to this commitment scheme as ΠVSSCom. For completeness, we provide the full
description of ΠVSSCom in Protocol 4.4.2. Jumping ahead, we will use ΠVSSCom (instead of the
standard ExtCom) to instantiate Stage-3 of our protocol.

Our Extractable Commitment ΠVSSCom. We show the extractable commitment in Proto-
col 4.4.2. It makes use of the following primitives:

– A statistically-binding commitment scheme Com;

– An extractable commitment scheme ExtCom;

– (n+ 1, t)-perfectly verifiable secret sharing scheme ΠVSS = (VSSShare,VSSRecon)

– A t-secure MPC protocol in the malicious model. In fact, we only need th MPC protocol
to be t-private in the semi-honest model and (perfectly or statistically) t-robust in the
malicious model, as defined in Definition 2.7.5.

Parameter Settings. We will pick our parameters such that t is a constant multiple of the
security parameter λ, and n is a constant multiple of t.

Protocol 4.4.2: Black-Box Extractable Commitment ΠVSSCom Compatible with
Proofs

Input: The committer C and receiver R have the security parameter λ as common input.
Additionally, C has as private input a value v which it wishes to commit to.

Commitment Phase: We describe the commitment protocol.

– Share-and-Commit: This consists of the following steps: C starts emulating n + 1
players “in his head”. C sets the input of Pn+1 (i.e., the Dealer) to the value v, while
each other player has no input. Then C runs VSSShare and each player Pi obtains shares
wi, for any i ∈ [n]. Let {View1, . . . ,Viewn+1} be the views of the n+1 players describing
the execution of this VSSShare. C sends commitment {cmi = Com(Viewi)}i∈[n].

– Coin-Tossing: This consists of the following steps:

1. R commits to a random string (of proper length) ch1
$←− {0, 1}poly(λ) using ExtCom.

10I.e., φ(x) ≡ 1 if and only if x is a valid bit string of appropriate size.
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2. C sends a random string ch2
$←− {0, 1}poly(λ).

3. R sends ch1 along with the corresponding decommitment.

We remark that both parties agree on a (pseudo) random size-t subset ch ⊂ [n], deter-
mined by the randomness ch1 ⊕ ch2.

– Response: C sends {Viewi}i∈ch with the corresponding decommitments information.

– Receiver’s Decision: the receiver accepts if and only if the following three conditions
hold:

∗ the committer’s decommitments in Response stage is consistent with the set ch
defined towards the end of Coin-Tossing stage;

∗ all the decommitments R received are valid, and the dealer Pn+1 has not been dis-
qualified by any player;

∗ all pairs of views in {View}i∈ch that R received in Response stage are consistent
(according to ΠVSS).

Decommmitment phase: This proceeds as follows:

1. C decommits to {cmi}i∈[n] as {Viewi}i∈[n].

2. R checks that all commitments to the views are opened correctly in the previous step.
If not, R outputs ⊥ and halts.

3. R runs VSSRecon using {Viewi}i∈[n] as inputs to reconstruct a value v as its output.

4.4.2 Black-Box Instantiation of Our CCA1:1 Commitment

In this subsection, we show how we can instantiate our CCA1:1 protocol 〈C,R〉CCA (Proto-
col 4.3.1) with the commit-and-prove ZKAoK protocol ΠBB

ZKAoK we built in previous subsection,
to get a constant-round black-box CCA1:1 commitment ΠBB

CCA.
This protocol makes use of a

(
(k + 2)n+ 1, (k + 2)t

)
-perfect VSS scheme and a (k + 2)t-

secure MPC protocol against malicious adversaries. The Stage-1, Stage-2 and Stage-4 of
ΠBB

CCA are the same as those of 〈C,R〉CCA. In the following, we show the modifications to the
remaining stages using ΠBB

ZKAoK:

– Stage-0: C commits to the value v using BBCom of ΠBB
ZKAoK. In the “MPC-in-the-head”

execution, C uses (k + 2)n + 1 (imaginary) parties. In addition, C sends the tag id to R
in the plain.

– Stage-3: C now commits to β = 0λ using ΠVSSCom (Protocol 4.4.2). We remark that the
first stage of ΠVSSCom is exactly a BBCom commitment to β. Recall that in Coin-Tossing
stage of ΠVSSCom, a size-t random subset ch is determined such that C will open t views
specified in ch. Note that ch is still a fraction-t subset of [(k + 2)n] even though we now
have (k + 2)n committed views.

– Stage-5: C and R engage in k + 1 sequential executions of BBProve(φ) of protocol
ΠBB

ZKAoK over the commit-stage transcripts of the two BBCom corresponding to Stage-0 and
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Stage-3. Predicate φ is true if and only if:

1. c = Com(v); or

2. β = α1

As remarked in Stage-3, here too ch is still a size-t random subset of [(k + 2)n] in each
of the k + 1 independent BBProve(φ) instances. Note BBProve(φ) proves statements over
multiple commitments and thus is the multi-commitment extension of ΠBB

ZKAoK. I.e., C will
decommit to both Stage-0 and Stage-3 commitments in addition to the views committed
in the first-round of BBProve(φ).

Remarks on the Security Proof. The security of ΠBB
CCA follows from that of 〈C,R〉CCA

since each of the primitives we have used achieve the properties necessary in the security
proof of 〈C,R〉CCA. This is due to the ZK and AoK properties of commit-and-prove protocol
ΠBB

ZKAoK. Indeed, ΠBB
ZKAoK is used to instantiate the WIAoK and it is WI due to being ZK.

The modifications to the commitments are also “proper” in the sense that they maintain
hiding and binding properties. This is since our choice of parameters guarantees that the
number of opened views is no more than (k+2)t. In particular, we open (k+2)t views during
Stage-0, and (k + 1)t views during Stage-3, each of which is at most (k + 2)t. Therefore,
the ZK property of ΠBB

CCA is preserved. Also, in each instance of BBProve(φ), we continue to
open at least a constant fraction of n committed views, and therefore the AoK property is
maintained as well (see Remark 4.4.3).

This completes the proof of the following theorem:

Theorem 4.4.1 (Black-Box 1-1 CCA Commitments). Assume the existence of one-way
functions. Then, there exists a constant round black-box construction of a 1-1 CCA secure
commitment scheme.

4.5 Angel-Based MPC in Õ(log λ) Rounds

As mentioned in the introduction, the security model that we consider is angel-based security,
or UC security with superpolynomial helpers. Very briefly, this is essentially the same as the
UC model used in [Can01], except that the adversary (in the real world) and the environment
(in the ideal world) both have access to a superpolynomial time functionality that acts as an
oracle or a helper. Formal definitions for this security model can be found in [CLP10] and
[LP12]. In terms of notation, if there is a protocol Π that emulates a functionality H with
helper H in this setting, we say that Π H-EUC-realizes F .

Kiyoshima [Kiy14] presents a black-box construction of a CCA-secure commitment scheme
with the following ingredients:

– a two-round statistically-binding commitment scheme, and a constant round “strongly
extractable” commitment, both of which are known from (black-box) one-way functions;

– a concurrently-extractable commitment (due to Micciancio et al. [MOSV06]) with a “ro-
bustness parameter” ` = O(R · log λ · log log λ), where R is specified in the next item;

– an R-round 1-1 CCA-secure commitment.
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The round-complexity of the resulting protocol is O(`).

We first remark that if R is a constant, Kiyoshima’s technique will yield a Õ(log λ)-round
CCA-secure commitment. More precisely, Kiyoshima states his results with a specific value
of `, namely, O(log2 λ · log log λ), since R = O(log λ) in his case. However, his construction
and proof work for any value of R if ` is as described above, i.e., as long as the 1-1 CCA
commitment has R rounds, the resulting (fully) CCA commitment will have O(R · log λ ·
log log λ) rounds. Next, note that we did construct a black-box 1-1 CCA commitment scheme
with round number R = O(1) (Theorem 4.4.1). This yields the Theorem 1.5.3.

Now, as in [Kiy14], we combine Theorem 1.5.3 with the following two results due to
Canetti et al. [CLP10, CLP16] and Lin and Pass [LP12] respectively to obtain Theorem 1.5.2,
the main theorem of this paper.

Theorem 4.5.1 ([LP12]). Assume the existence of an RCCA-round robust CCA-secure com-
mitment scheme 〈C,R〉 and the existence of an ROT-round semi-honest oblivious transfer
protocol 〈S,R〉. Then, there is an O(max(RCCA, ROT))-round protocol that H-EUC-realizes
FOT. Furthermore, this protocol uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

Theorem 4.5.2 ([CLP10, CLP16]). For every well-formed functionality F , there exists a
constant-round FOT-hybrid protocol that H-EUC-realizes FOT .
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Chapter 5

Toward a Unified Approach to
Black-Box Zero-Knowledge Proofs

5.1 Technical Overview

5.1.1 Black-Box Separation

We first present a very brief overview of our black-box separation. A detailed overview is
given in Section 5.3.2 after setting up necessary notation and definitions.

Let us first recall how Rosulek [Ros12] rules out FBB constructions of honest-verifier
witness-hiding (HVWH) protocols for the range-membership of OWFs, assuming injective
OWFs exist.

The proof starts by assuming that such protocols exist. In particular, when instantiated
with an injective OWF f , the protocol (P f , V f ) is HVWH for Rf = {(y, x) | s.t. y = f(x)}.
Since f is injective, for a pair (x∗, y∗ = f(x∗)) remapping f(x∗) to a value different from y∗

will give us a new OWF f ′ whose range does not contain y∗ anymore. Moreover, the verifier
accepts in 〈P f (x∗, y∗), V f ′(y∗)〉 with roughly the same probability as in 〈P f (x∗, y∗), V f (y∗)〉.
This is because the only opportunity to distinguish these two executions is when the verifier
queries its oracle on x∗; but this happens with negligible probability because of the HVWH
property of the protocol. However, this contradicts the soundness: V ’s oracle now becomes
f ′, and @x s.t. (y∗, x) ∈ Rf ′ .

It is unclear how to reuse the above technique to rule out PB-OWFs. As mentioned
earlier, there are no restrictions on how the F (·) part behaves. In particular, F f is not
guaranteed to be injective even if f is injective. Thus, “carving out” a value from the range
of f may not affect the range of F f .

To derive the desired contradiction, we take a fundamentally different approach to con-
struct f ′. We first define a set QEasy, which consists of only the queries made by the verifier
with “high” probability during the (honest) execution 〈P f (x∗, y∗), V f (y∗)〉. We then define
f ′ by maintaining the same behavior as f on QEasy, and re-sampling all the remaining points
uniformly at random. Note that the receiver will still accept with “high” probability even if
we change its oracle to f ′, because f ′ and f only differ at the points that are queried with
“low” probability (i.e., the points outside QEasy). Now, the only thing left is to show that y∗

is not in the range of F f ′ . Unfortunately, due to the generality of F (·), we do not know how
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to do that.
However, if we switch our focus to a PB-PRG Gf (instead of PB-OWF F f ), we can prove

the following claim which helps separate PB-PRGs from OWFs:

Claim 5.1.1 (Informal Statement of Claim 5.3.3). Let f , and f ′ be as defined above. If we
start with a y∗ in the range of Gf , y∗ is still in the range of Gf ′ with probability ≤ 0.5+negl(λ),
where G(·) is a PRG when instantiated with any OWF f as its oracle.

Let us show the intuition behind Claim 5.1.1. Assume the lemma is false. In the pseudo-
randomness game for Gf , we show how to identify the case y∗ ∈ Range(Gf ) correctly, with
probability noticeably greater than 0.5, thus contradicting pseudo-randomness. To do that,
the adversary simply estimates the probability that y∗ ∈ Range(Gf ′). We will show that, if
this probability is noticeably greater than 0.5, then Pr[y∗ ∈ Range(Gf )] is also noticeably
greater than 0.5.

To perform the above estimation successfully, the adversary must know QEasy, but it
does not. However, the adversary can run the HVZK simulator many times to get an
estimate Q̃Easy for the real QEasy. We will show that Q̃Easy suffices for our proof. There is
a caveat that the adversary needs to perform exponential work to estimate the probability
that y∗ ∈ Range(Gf ′), even if it knows the set Q̃Easy. Fortunately, it only makes polynomially
many oracle queries (when executing the HVZK simulator), which suffices for establishing a
fully-black-box separation.

5.1.2 Proof-Based One-Way Functions (and PRGs)

Let us start by considering the following basic construction for PB-OWF (F f ,Πf
F ) over inputs

of the form (x, r). The construction is based on the “cut-and-choose” technique, where the
sender queries the oracle f on “blocks” of x, and the receiver checks a size-t random subset
(defined by r) of the responses. This method is not sound, since it can only guarantee that
the sender’s response is correct on most but not all blocks. We will handle this issue by
introducing a new idea.

Basic Construction. PB-OWF (F f ,Πf
F ) handles inputs of the form (x, r). F f computes

as follows:

1. Parse x as (x1, . . . , xn).

2. Interpret r as a size-t (t < n) subset of [n], denoted by {b1, . . . , bt} .

3. Output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r, where yi = f(xi) for all i ∈ [n].

On input x to Sf (the sender) and r to Rf (the receiver)1, the execution 〈Sf (x), Rf (r)〉 is as
follows:

1. Sf parses x as (x1, . . . , xn), and computes (y1, . . . , yn) via its oracle access to f (i.e.,
yi = f(xi)). It sends (y1, . . . , yn) to the receiver.

1Henceforth, we will call the two parties “sender” and “receiver” instead of “prover” and “verifier”. This
is because our ZKP is captured by considering a secure computation style definition for two parties.
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2. Rf sends its input r to Sf . Same as in F f , the r specifies a size-t subset {b1, . . . , bt} of [n].
Recall that the honest receiver’s input r is random. In this case, {b1, . . . , bt} is a random
subset of [n].

3. Sf sends (xb1 , . . . , xbt), i.e., the xi’s whose indices are specified by r.

4. Rf checks (via its oracle access to f) if ybi = f(xbi) for all i ∈ [t]. If all the checks pass,
Rf output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r.

Completeness is straightforward; furthermore, F f (·, r) is trivially one-way for every r since
t < n and f is a OWF. Let us first consider the honest-verifier zero-knowledge (HVZK)
property of protocol Πf

F .
Recall that the ZK property is defined via the ideal/real paradigm for secure computation,

and it requires simulation-security against malicious receivers. Thus, to prove the HVZK
property, we need to show an ideal-world simulator Sim for the honest receiver. This is easy
since the honest receiver will always use the given input r, which is uniformly distributed.
More specifically, Sim works by sampling a uniform r by itself, sending the r to the ideal
functionality, and receiving in turn the output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r. With this y,
Sim can easily generate a simulated transcript that is identically distributed to the real one.

ZK Against Malicious Receivers. The above simulation strategy does not work for
malicious receivers, because they may not use the given input r. Therefore, the simulator
needs to somehow extract the candidate input r∗ from the malicious receiver. However, the
receiver will not give out its r∗ until the sender/simulator sends the {yi}i∈[n] values.

We point out that this issue cannot be fixed using standard methods such as requiring
the receiver to commit to r and to open it later. This is because later, we will introduce a
pre-image editing condition and require that the sender’s computation of F f be consistent
with this editing.

We therefore use a different idea. We modify the protocol to use a black-box commit-and-
prove scheme ΠZKCnP = (BBCom,BBProve) with ZK property (see Definition 5.2.2). This
scheme has a pair of simulators (Sim1, Sim2) that can be used to simulate the receiver’s view
in the commit stage and the prove stage respectively. Our new Πf

F is the same as before
except for the following changes:

– In Step 1, instead of sending yi’s as before, the sender commits to them using BBCom.
Formally, the sender sets ν = (y1, . . . , yn) and executes BBCom(ν) with the receiver.

– In Step 3, the sender sends both {xbi}i∈[n] and the value ν. It then proves using BBProve
that this ν is indeed the value committed in BBCom.

As before, the receiver needs (y1, . . . , yn) to execute Step 4. Now, these values are contained
in ν, and BBProve guarantees that the sender cannot change ν.

With these modifications, we can prove the ZK property for malicious receivers as fol-
lows. The simulator starts by running Sim1 (the commit-phase simulator) with the malicious
receiver R∗f . In this way, the simulator can go through Step 1 smoothly, without knowing
the actual {yi}i∈[n] values. Then, it will receive the r∗ from R∗f . The simulator sends
r∗ to the ideal functionality and receives back y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r∗. It sends
ν = (y1, . . . , yn) and (xb1 , . . . , xbt) to the receiver. Then, instead of executing BBProve, the
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simulator invokes Sim2 to help itself go through the BBProve stage. It is easy to see that the
ν and {xbi}i∈[t] sent by the simulator meet the consistency requirement in Step 4. Relying
on the ZK property of ΠZKCnP, one can formally prove that the simulation is done properly.

Soundness and Preimage Editing. As mentioned earlier, the “cut-and-choose” structure
is not sufficient to guarantee the existence of a preimage. To see that, consider a malicious
sender who picks an i∗ ∈ [n] at random, sets yi∗ to some value not in the range of f , or
behaves honestly otherwise. This malicious sender can still make the honest receiver accept
with non-negligible probability, even if t is as large as n−1 (the upper bound for t to achieve
any non-trivial ZK property). This is addressed by modifying the construction of F f .

We start by noting that the “cut-and-choose” trick ensures that most of the yi’s are
“good” (i.e., having preimages under f). For example, if t is a constant fraction of n, then
the protocol ensures (except with negligible probability) that at most k of the yi’s are “bad”,
where k is another constant fraction of n. Therefore, our idea is to extend the range of F f

to include all the images y that have ≤ k bad yi’s. More specifically, our new F f works as
follows. On input (x, r), it still interprets r as {b1, . . . , bt}. But it will parse x as

x = (x1, . . . , xn)‖ (p1, y
′
p1

), . . . , (pk, y
′
pk

)︸ ︷︷ ︸
β

,

where the {p1, . . . , pk} form a size-k subset of [n]. The evaluation of F f (x, r) consists of two
cases:

– Non-Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} 6= ∅, then it computes y as before,
ignoring the β part. That is, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si = yi for
all i ∈ [n].

– Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, then at positions specified by pi’s, it
replace ypi with y′pi . Namely, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si :={
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

Let us explain how this editing technique resolves the soundness issue. Consider a y∗ learned
by the honest receiver with input r. As mentioned before, there are at most k yi values (among
those contained in y∗) that do not have preimages under f . These values can be expressed
as {y∗p1 , . . . , y

∗
pk
}, i.e., their indices are {p1, . . . , pk}. Moreover, this set of bad indices does

not overlap with the {b1, . . . , bt} specified by r; otherwise, the receiver would abort when
performing the checks in Step 4. Therefore, by setting the β part to (p1, y

∗
p1

), . . . , (pk, y
∗
pk

),
we will obtain a valid preimage for y∗ under our new F f (·, r).

One may wonder whether a malicious sender can cheat by taking advantage of the editing
case. However, since the honest receiver will use a random r, the set {b1, . . . , bt} will always
overlap with {p1, . . . , pk} (except with negligible probability). That is, although we prove
soundness by relying on the editing case, it almost never happens in a real execution. So,
this will not give malicious senders any extra power.

We remark that the above preimage-editing idea is compatible with our technique for
achieving (full) ZK. Now, the sender will append (y1, . . . , yn) and β to the committed value
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ν. Upon receiving Rf ’s challenge r, the sender computes s = (s1, . . . , sn) according to the
above definition of F f . It sends both s and {xb1 , . . . , xbt} to the receivers. Then, it runs
BBProve to prove that it does the editing (or non-editing) honestly. Note that this statement
can be expressed as a predicate on the values s, r, β, and {yi}i∈[n], where the last two are
committed in BBCom(ν). Since it does not involve the code of f , the protocol remains
black-box in f . We provide more details in Section 5.4.2.

Proof-Based PRGs. Following the above paradigm, we also obtain a proof-based PRG by
simply replacing the oracle OWF f with a PRG in the above PB-OWF construction. We
provide a formal treatment in Section 5.5.

5.1.3 Proof-Based Collision-Resistant Hash Functions

Recall that a PB-CRHF consists of a function Hh and a protocol Πh
H such that for any

CRHF h:

– For all r, Hh(·, r) is a CRHF; and

– Πh
H = (Sh, Rh) is protocol satisfying similar completeness, soundness, and ZK properties

as for our PB-OWFs, but w.r.t. Hh.

Let us first try to reuse the idea from our PB-OWFs. On input (x, r), the Hh first parses x
as (x1, . . . , xn)‖β, where the β has the same structure as before, for the purpose of preimage
editing. It then generates {yi}i∈[n] where yi = h(xi), and outputs y = s‖(xb1 , . . . , xbt)‖r,
where the value s = (s1, . . . , sn) is computed by editing {yi} (in the same way as for our
PB-OWFs).

Since h is also a OWF, the Hh is surely one-way. However, it is not collision-resistant.
To see that, recall that in the non-editing case, the β part is not used when computing
Hh(x, r). This implies the following collision-finding attack. For a fix r, the adversary first
computes y∗ = Hh(x∗, r) with an x∗ whose β part does not trigger the editing condition.
Then, it can easily find many preimages for y∗ by using different β’s as long as they do not
trigger the editing condition. Therefore, we need to come up with a new editing method
that does not compromise collision resistance.

To do that, we modify Hh as follows. We sample a public string z and hard-wire it
in Hh. In this way, Hh

z can be viewed as a member of the public-coin collision-resistant
hash family indexed by z instead of a single CRHF. Then, we can think of x as containing
additionally two strings τ and µ. When evaluating Hh

z (x, r), we will perform the editing if
{b1, . . . , bt} ∩ {p1, . . . , pk} = ∅ and α 6= z and h(τ) = h(z). Moreover, we include the value
t = h(β‖τ‖µ) in the output y. Intuitively, this hash of β in y prevents the adversary from
constructing collisions using a different β.

We now explain how to perform editing in this setting. First, we will include in x
an additional value τ such that τ 6= z and h(τ) = h(z). This allows us to trigger the
editing condition. With z sampled randomly, it is not hard to see that such a τ exists with
overwhelming probability2. We can then set β as before to ensure that the (x1, . . . , xn) part

2This holds if the size of range of h is exponentially larger than its image space. It is also worth noting
that τ does not need to be efficiently computable, because our soundness proof (or the editing technique) is
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is “edited” properly. However, note that the y∗ here contains additionally a t∗ value. To
handle this, we modify the construction of Hf

z slightly—We require that, when the editing
condition is triggered, Hf

z sets t = µ in its output y. With this change, when performing
editing, we can simply let µ equal the t∗. It is not hard to verify that this editing technique
will lead to a valid preimage for y∗.

Finally, we remark that our real construction uses a Merkle tree for the prefix (x1, . . . , xn)
of x. We only put the Merkle root in y instead of the element-wise hash values described
above. The soundness can be proved following essentially the same idea as above, except
that we now “edit” the Merkle tree, which is done by extending the editing ideas to the tree
setting. This allows us to compress a prefix of any length to a fixed-length string, such as
256 bits if using SHA256 for h. We refer the reader to Section 5.6 for a formal treatment of
PB-CRHF.

5.1.4 Supporting Predicates

We discuss how to extend our constructions using “MPC-in-the-head” to additionally guar-
antee not only that the output learned by the receiver is in the range of the deterministic
primitives, but also that the set of preimages contains one whose prefix satisfies some pred-
icate φ.

Let us take a fresh look at the PB-OWF construction. It first parses the input as
x = α‖β. The β is for preimage editing; and the α = (x1, . . . , xn) can be regarded as a form
of Encoding the prefix of x, i.e. Enc(α) = (x1, . . . , xn). Then, it computes yi = f(xi) for all
i ∈ [n]. Since this is mainly to introduce hardness (or one-wayness) to the final output, we
can refer to this step as Hardness Inducing.

To support the proof of a predicate φ, we update the construction with new Encod-
ing and Hardness Inducing methods. We first secret-share α to ([α]1, . . . , [α]n) using
a verifiable secret sharing (VSS) scheme. This can be viewed as a new encoding method:
Enc(α) = VSS(α) = ([α]1, . . . , [α]n).

Next, we commit to these shares using Naor’s commitment [Nao90], which can be built
from the oracle OWF f in a black-box manner. This can be thought of as a new Hardness
Inducing method. Now, the output of F f is of the following form:

F f (x, r) = (Com([α]1), . . . ,Com([α]n))‖([α]b1 , . . . , [α]bt)‖r.

In the protocol Πf
F , we additionally ask the sender to compute the value φ(α) using the

MPC-in-the-head technique. That is, the sender imagines n virtual parties {Pi}i∈[n], where
Pi has [α]i as its input. These n parties then execute a MPC protocol w.r.t. to the ideal
functionality, which recovers α from the VSS shares, and outputs φ(α) to each party. Let vi
denote the view of party i from the execution. The sender first commits to these views, and
then opens some of them (picked by the receiver) for the receiver to check that the MPC
for φ(α) was performed honestly. In this way, the receiver not only learns φ(α), but also
believes that the sender did not cheat.

Finally, we make a few remarks:

only an existential argument.
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– To achieve soundness, we also need to apply the preimage editing idea to the above
construction.

– Both the VSS and Com require randomness, which can come from x. That is, we require
that the x is long enough such that it also contains an η part (in addition to α and β).
This η will provide the randomness for VSS and Com.

– The above approach applies directly to the PB-PRG and PB-CRHF constructions to make
them support predicates on the α part of the preimage.

5.2 Preliminaries

In the following, we present additional preliminaries that are necessary for this chapter.

5.2.1 Naor’s Commitment Schemes

We will use Naor’s two-round commitment scheme [Nao90], which is computationally-hiding
and statistically-binding. It can be constructed from any OWFs in a black-box manner. The
original scheme is for committing a single bit. But it can be extended to multi-bit messages
by applying it bit-wise. We recall how this works. To commit a single bit b, R sends a string

ρ ∈ {0, 1}3λ to S. Then S picks a random seed s
$←− {0, 1}λ and applies a pseudo-random

generator PRG(·) (which can be constructed from any OWFs in a black-box way). If b = 0,
S sends cm = PRG(s); if b = 1, S sends cm = PRG(s)⊕ ρ.

5.2.2 Collision-Resistant Hash Families

We use the definition from [HR04].

Definition 5.2.1 (Collision-Resistant Hash Families). A private-coin collision-resistant hash
family (CRHF) is a collection of functions H = {hi}i∈I for some index set I, where hi :
{0, 1}`(|i|) → {0, 1}`′(|i|) and `(|i|) > `′(|i|). It satisfies the following requirements:

– Key Generation. There exists a PPT key generating algorithm KGen, so that KGen(1λ) ∈
{0, 1}m(λ) ∩ I, where m(λ) is a polynomial on λ representing the length of the key.

– Efficient Evaluation. There exists a (deterministic) polynomial time algorithm Eval
such that ∀i ∈ I and ∀x ∈ {0, 1}`(|i|), Eval(i, x) = hi(x).

– Non-Uniform Collision Resistance. For any non-uniform PPT machine A, the fol-
lowing holds:

Pr[i
$←− KGen(1λ), (x, x′)← A(i) : x 6= x′ ∧ hi(x) = hi(x

′)] ≤ negl(λ).

Remark 5.2.1 (Public-Coin CRHFs). The CRHFs defined above is private-coin. In the
above definition, if the index set I is {0, 1}∗ and KGen(1λ) outputs a uniformly distributed
string from {0, 1}m(λ), then we say that it is a public-coin CRHF, i.e., the family remains
collision-resistant even if the randomness used to generate the key is known to the adversary.
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Also, we emphasize that the collision-resistance property holds against non-uniform PPT
adversaries.

5.2.3 Black-Box Zero-Knowledge Commit-and-Prove

We need a zero-knowledge commit-and-prove protocol ΠZKCnP with the following additional
properties:

– it consists of two separate phases: a Commit stage BBCom and a Prove stage BBProve;

– the Commit stage itself constitutes a statistically-binding commitment scheme;

– for a public predicate φ(·), the Prove stage constitutes a zero-knowledge argument for
the value φ(x), where x is the value committed in BBCom;

– ΠZKCnP can be constructed assuming only black-box access to OWFs.

We present the formal definition in Definition 5.2.2. We remark that this definition is
very similar to Definition 4.4.1, except that we do not need the argument of knowledge
property any more. For self-containment, we present the version used in this chapter in
Definition 5.2.2. There exist constructions satisfying this definition while making only black-
box use of OWFs (e.g., [IKOS07, GLOV12, CLP20a]).

Definition 5.2.2 (Zero-Knowledge Commit-and-Prove). A black-box zero-knowledge commit-
and-prove scheme consists of a pair of protocols ΠZKCnP = (BBCom,BBProve) executed be-
tween a pair of PPT machines P and V . These protocols are executed in the following
phases:

– Commit Stage: P and V invoke BBCom(x) such that at the end of this protocol, P is sta-
tistically committed to the value x. We use τ to denote the transcript from BBCom(1λ, x)
execution. P stores private state ST.

– Prove Stage: P and V take the transcript τ and a predicate φ as common input. P
takes ST as its private input. P proves to V using BBProve(1λ, φ) that there exists some
value x such that τ is a valid commitment to x, and also φ(x) = 1.

We require that the following properties are satisfied:

– Black-Box. Both phases only require black-box access to cryptographic primitives.

– Committing. The Commit stage BBCom(x) constitutes a statistically-binding commit-
ment to the value x.

– Completeness. If P and V are honest and φ(x) = 1, then V accepts the proof with
probability 1.

– Soundness. For any PPT prover P ∗, the following holds except with negligible probability:
V accepts only if φ(x) = 1, where x is the value to which the Commit stage is statistically
bound.

– Zero-Knowledge. There exists a pair of PPT machines (Sim1, Sim2) satisfying the fol-
lowing requirement. Given oracle access to a machine V ∗, SimV ∗

1 (1λ) generates a transcript
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τ̃ and stores a private state ST; then for any predicate φ, SimV ∗

2 (1λ, φ, ST) generates a tran-
scripts View. For every PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT predicate φ and
every x s.t. φ(x) = 1, it holds that{(

SimV ∗

1 (1λ), SimV ∗

2 (1λ, φ, ST, z)
)}

λ∈N
c
≈ {View

P (x)
V ∗ (1λ, φ, z)}λ∈N,

where the ST is the private state of SimV ∗

1 (1λ) at termination, and View
P (x)
V ∗ (1λ, φ, z) de-

notes the view of V ∗(1λ, φ, z) in both Commit stage and Prove stage, resulted from its
interaction with P (1λ, x, φ), where both parties learn φ at the beginning of Prove stage.
We will refer to Sim1 as the Commit-stage simulator, and Sim2 the Prove-stage simu-
lator.

5.2.4 The One-Oracle Separation Paradigm

We first recall in Definition 5.2.3 the notion of fully-black-box reductions. We say that P
cannot be obtained from Q in a fully-black-box way if there is no fully-black-box reduction
from Q to P .

Definition 5.2.3 (Fully-Black-Box Reductions [RTV04]). There exists a fully-black-box re-
duction from a primitive Q to a primitive P , if there exist PPT oracle machines G and S
such that:

– Correctness: For every (possibly-inefficient) f that implements P , Gf implements Q;

– Security: For every (possibly-inefficient) f that implements P and every (possibly-inefficient)
machine A, if A breaks Gf (w.r.t. Q-security), then SA,f breaks f (w.r.t. P -security).

A useful paradigm to rule out fully-black-box constructions is to design an oracle O, and
show that, relative to O, primitive P exists but Q does not. A critical step in this proof
is to construct an oracle machine AO that breaks the security of Q. We emphasize that
A is allowed to be computationally unbounded as long as it only makes polynomially-many
queries to O (see e.g., [IR89, BM17]). Our fully-black-box separation results in Section 5.3
will follow this paradigm.

5.3 The Impossibility Results

5.3.1 Meta-Functionally Black-Box Constructions

Functionally Black-Box Protocols. To capture MPC protocols that “do not know” the
code of the target function g, Rosulek [Ros12] proposed the following notion of functionally-
black-box protocols.

Definition 5.3.1 (Functionally-Black-Box Protocols [Ros12]). Let C be a class of functions,
and let F (·) be an ideal functionality that is an (uninstantiated) oracle machine. Let A(·)

and B(·) be PPT interactive oracle machines. Then, we say that (A(·), B(·)) is a functionally-
black-box (FBB) protocol for FC in a certain security model if, for all g ∈ C, the protocol
(Ag, Bg) is a secure protocol (in the model in question) for the ideal functionality Fg.
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By instantiating C and F (·) properly, Definition 5.3.1 could capture black-box construc-
tions of many useful cryptographic protocols. For example, let Cowf be the collection of
OWFs. For any g ∈ Cowf, let Fgzk be the functionality that takes input x from party A,
queries its oracle g to obtain y = g(x), and outputs y to party B. Such an Fgzk is essen-
tially a zero-knowledge argument (of knowledge) functionality for statements of the form “∃x
s.t. g(x) = y”. However, Rosulek showed that if injective OWFs exist, then it is impossible to
have FBB protocols that implement FCowf

zk with semi-honest security (in the standard MPC
setting), even in the presence of an arbitrary trusted setup. Given the broad application of
ZK proofs, this result is quite discouraging.

Meta-FBB Functionalities. Observe that the above Fgzk functionality simply collects
input x from A, queries its oracle g, and sends g(x) to B. It only plays the role of a delegate
for A and B to interact with the OWF g. Therefore, it is temping to investigate whether
we can circumvent Rosulek’s lower bound by allowing the “delegate” Fzk to perform extra
computations, such as preprocessing x, post-processing g(x), or making multiple queries to
the oracle g, etc.

More formally, we want a non-cryptographic and deterministic computation F (used to
capture the aforementioned extra computations), such that C ′owf = {F g | g ∈ Cowf} is a
collection of OWFs. And we hope that there exists a FBB protocol (Ag, Bg) implementing

FF gzk for all F g ∈ C ′owf (we can also denote it as FC
′
owf

zk ). Note that we require (A(·), B(·))
to access g in a black-box way only; they can make use the code of F . Since C ′owf is also

a collection of one-way families, FC
′
owf

zk can be used as a substitute for FCowf
zk , with the only

overhead coming from the computations represented by F (·). Because F (·) is supposed to

contain only simple non-cryptographic operations, the implementation of FC
′
owf

zk should be as
efficient as that of FCowf

zk . Therefore, if this approach is possible, it will alleviate the negative
implications of Rosulek’s lower bound.

We can also interpret FC
′
owf

zk as a new FBB functionality FCowf
zk [F ], i.e., a new oracle

machine F (·)
zk [F ] to be instantiated with oracle OWFs from the original collection Cowf.

For any g ∈ Cowf, Fgzk[F ] collects the input X from Party A, evaluates F g(X), and sends
y = F g(X) to Party B.

With this interpretation, FC
′
owf

zk is just an instantiation of Definition 5.3.1 with F (·) =
F (·)

zk [F ] and C = Cowf. To distinguish with Rosulek’s F (·)
zk functionality. We call F (·)

zk [F ] the
Meta-FBB ZK Functionality. Similarly, one can also extend other FBB functionalities in
[Ros12] (e.g., 2-party secure function evaluation F (·)

sfe, pseudo-random generator F (·)
prg, where

sender A holds the seed and receiver B holds the key) to the corresponding Meta-FBB
version.

5.3.2 The Main Theorem

In this part, we show that although we relax Rosulek’s FBB notion to the Meta-FBB one,
there still exists strong impossibility result. More specifically, we prove that, given only
black-box access to OWFs, it is impossible to build a PRG that admits Meta-FBB honest-
verifier zero-knowledge protocols.

Definition 5.3.2 (Fully-Black-Box PRGs from OWFs). Let C be the collection of OWFs.
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A (deterministic) polynomial-time oracle machines G(·) is a fully-black-box construction of
PRG from OWF if there exists a PPT oracle machines A(·,·) such that:

– Correctness: ∀f ∈ C, Gf is a PRG;

– Security: ∀f ∈ C and every (possibly inefficient) machine M , if M breaks the pseudo-
randomness of Gf , then AM,f breaks the one-wayness of f .

Theorem 5.3.1 (Main Theorem). Let C = {f | f is a OWF}. There does not exist a
(deterministic) oracle machine G(·) such that

1. G(·) is a fully-black-box construction of PRG from OWF; and

2. for all f ∈ C, there exists a stand-alone, Meta-FBB, honest-verifier zero-knowledge argu-
ment system Πf = 〈P f , V f〉 for the functionality Ffzk[G].

Before showing the full proof in Section 5.3.3, let us provide the high-level idea.

Proof Overview. We start by assuming (for contradiction) that the G(·) and Π(·) specified
in the theorem exist. We will construct a special oracle denoted as O�QEasy (explained later)
such that:

1. The oracle O � QEasy is one-way. Thus, GO�QEasy
will be a PRG and ΠO�QEasy

will be the
HVZK system for the language L = {Y : ∃X s.t. Y = GO�QEasy

(X)}.
2. There exist a Ÿ /∈ L (the false statement) and a PO�QEasy

(the cheating prover P with the
oracle O �QEasy) that is able to make V O�QEasy

(Ÿ ) accept.

This will give us the desired contradiction as it breaks the soundness of the protocol ΠO�QEasy
.

Toward the above goal, we first sample two random oracles O, O′, a random string X,
and compute Y = GO(X). Let Q = {(q1,O(q1)), . . . , (qt,O(qt))} denote the query-answer
pairs exchanged between G and its oracle O during computation Y = GO(X). We now define

the oracle O′ �Q(q) :=

{
O(q) if (q,O(q)) ∈ Q
O′(q) otherwise

. It is not hard to verify that Y = GO′�Q(X).

By completeness, V will accept with probability 1− δc (where δc is the completeness error)

in the execution ExecO
′�Q

X,Y = 〈PO′�Q(X, Y ), V O′�Q(Y )〉.
Note that during ExecO

′�Q
X,Y , the verifier may make queries to its oracle O′ �Q. We define

a set of “easy” queries:

QEasy := {(q,O(q))
∣∣ V queries q with “high” probability during ExecO

′�Q
X,Y }.

Let QHard be the set difference Q \QEasy. It is not hard to see that Y = GO′�(QEasy∪QHard)(X).

By completeness, V will accepts with probability 1− δc in the execution Exec
O′�(QEasy∪QHard)
X,Y .

Now, consider the execution 〈PO′�(QEasy∪QHard)(X, Y ), V O′�QEasy
(Y )〉, which is identical to

Exec
O′�(QEasy∪QHard)
X,Y , except that we remove the QHard from the verifier’s oracle. In this execu-

tion, the probability that V accepts will not differ too much from that in Exec
O′�(QEasy∪QHard)
X,Y ,

because the queries in QHard are asked by V with only “low” probability.
We then prove that Y is in the range of GO′�QEasy

(·) with probability at most 0.5 (up to
negligible error). But the previous argument says that V O′�QEasy

(Y ) accepts with probability
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close to 1. It then follows from an averaging argument that there exists “bad” Ö, Ö′ and Ẍ3

such that Ÿ = GÖ(Ẍ) is not in the range of GÖ′�Q̈Easy
(·), but V Ö′�Q̈Easy

(Ÿ ) can be convinced

with probability close to 1, by the malicious prover P Ö′�(Q̈Easy∪Q̈Hard)(Ẍ, Ÿ ) (which can be

viewed as an oracle machine PÖ′�Q̈Easy
with non-uniform advice Ẍ, Ÿ , and Q̈Hard). This

breaks the soundness of ΠÖ′�Q̈Easy
, thus completing the proof.

We remark that proving Y is in the range of GO′�QEasy
(·) with probability ≤ 0.5 (up to

negligible error) is the most involved part. And this is where the HVZK property of Π(·) plays
an essential role. Roughly, we will show that if this claim does not hold, then there exists
an adversary AO

prg that can break the pseudo-randomness of GO(·) by making polynomially
many oracle queries. As we will explain later, this reduction requires AO

prg to know the set
QEasy w.r.t. the challenge string Y in the security game of PRG. But note that AO

prg does not
know the preimage X (if Y is indeed in the range), which is necessary to figure out QEasy.
This is where the HVZK simulator comes to our rescue. We will run the simulator SimO

V (Y )

repeatedly for (polynomially) many times to get an estimate Q̃Easy for the set QEasy. This

Q̃Easy will be good enough to finish our proof. A more detailed overview of this strategy is
provided at the beginning of Section 5.3.4.

5.3.3 Proof of Theorem 5.3.1

Assume for contradiction that there exists an oracle machine G(·) and a protocol 〈P (·), V (·)〉
such that given the access to any one-way function {fn}n∈N:

1. Gfn : {0, 1}` → {0, 1}`+1 is a PRG (` and n are polynomially related); and

2. Π = 〈P fn , V fn〉 is a semi-honest zero-knowledge argument system for the Meta-FBB
functionality Ffnzk [G].

We first recall the following lemma, which says that the measure-one of randomly-sampled
oracles is one-way.

Lemma 5.3.1 (One-Wayness of Random Oracles [IR89, Yer11]). Let O = {On}n∈N be a
collection of oracles where each On is chosen uniformly from the space of functions from
{0, 1}n to {0, 1}n. With probability 1 over the choice of O, O is one-way against unbounded
adversaries that make only polynomially many oracle queries to O.

Let both O = {On}n∈N and O′ = {O′n}n∈N be defined (independently) as in Lemma 5.3.1.
It follows from Lemma 5.3.1 that, with probability 1, both O and O′ are one-way.

In the following, we show two hybrids. From the second hybrid, we will construct a
malicious prover breaking the soundness of Π(·) (with the oracle being instantiated by a
special one-way oracle defined later). This will give us the desired contradiction, and thus
will finish the proof of Theorem 5.3.1.

Notation. We first define some notation. For an oracle H and a set of tuples S =
{(q1, a1), . . . , (qt, at)}, we define a new oracle H � S as follows: if q equals some qi for which
there exists a pair (qi, ai) in the set S, the oracle H � S returns ai; otherwise, it returns H(q).

3Note that these values already determine the sets Q̈, Q̈Easy, and Q̈Hard as defined above.
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Formally,

H � S(q) =

{
H(q) if q /∈ {q1, . . . , qt}
ai if q = qi ∈ {q1, . . . , qt}

.

Hybrid H0. This hybrid samples Xn
$←− {0, 1}`(n), and computes Yn = GOn(Xn). W.l.o.g.,

we assume that G on input Xn makes t(n) distinct queries to its oracle On, where t(n) is a
polynomial of n. Let Qn =

{(
q1,On(q1)

)
, . . . ,

(
qt,On(qt)

)}
be the query-answer pairs during

the computation Yn = GOn(Xn).

Let Exec
O′n�Qn
Xn,Yn

= 〈PO′n�Qn(Xn, Yn), V O′n�Qn(Yn)〉 denote the execution where P proves to

V that there exists an Xn such that Yn = GO′n�Qn(Xn). Note that during this execution, the
verifier may query its oracle O′n �Qn. For each qi ∈ {0, 1}n, let pi denote the probability that

qi is queried by V during Exec
O′n�Qn
Xn,Yn

. Let QEasy
n defines the set of “easy” queries and their

corresponding answers:

QEasy
n :=

{(
qi,O

′
n �Qn(qi)

) ∣∣ pi ≥ 1

t(n) · n
during Exec

O′n�Qn
Xn,Yn

}
. (5.1)

Let QHard
n be the set difference Qn \QEasy

n . We remark that Qn and QEasy
n ∪QHard

n may not be
the same, but it must hold that Qn ⊆ QEasy

n ∪QHard
n .

Looking ahead, we will instantiate G(·) and Π(·) with the oracle O′n � (QEasy
n ∪QHard

n ). Note
that G(·) and Π(·) will have the desired property only if they are instantiated with one-way
functions. Therefore, we show in Claim 5.3.1 that the composed oracle O′n � (QEasy

n ∪QHard
n )

is one-way. It is worth noting that the one-wayness of this composed oracle is independent
of the choice of {Xn}, though the definition of Qn, QEasy

n and QHard
n depends on Xn.

Claim 5.3.1. The collection of oracles
{

O′n � (QEasy
n ∪ QHard

n )
}
n∈N defined above is one-

way with probability 1, where the probability is taken over the sampling of O = {On}n and
O′ = {O′n}n, and is independent of the distribution of {Xn}n∈N.

Proof. The query-answer pairs in QEasy
n and QHard

n are of the form
(
q,On(q)

)
or
(
q,O′n(q)

)
.

Although Xn decides which (q, ∗)4 will be in QEasy
n and QHard

n , the answer part On(q)’s and
O′n(q)’s are uniformly distributed, independent of Xn. That is, if On and O′n are sampled
randomly, then for any Xn ∈ {0, 1}`(n), O′n � (QEasy

n ∪ QHard
n ) will also be a random oracle.

Therefore, for any {Xn}n∈N where Xn ∈ {0, 1}`(n), the following holds{
O′n � (QEasy

n ∪QHard
n )

}
n∈N

i.d.
== {O′′n}n∈N,

where each O′′n is sampled uniformly from the space of functions from {0, 1}n to {0, 1}n.
Since it follows from Lemma 5.3.1 that {O′′n}n∈N is one-way with probability 1, so is

{
O′n �

(QEasy
n ∪QHard

n )
}
n∈N.

Claim 5.3.1 (together with our assumption) implies that, with probability 1 taken over
the sampling of O and O′:

4The symbol “∗” denotes the wildcard that matches any answer to q.
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– GO′n�(Q
Easy
n ∪QHard

n ) : {0, 1}`(n) → {0, 1}`(n)+1 is pseudo-random against all (unbounded) ad-
versaries that make polynomially many queries to the oracle O′n � (QEasy

n ∪QHard
n ); and

– ΠO′n�(Q
Easy
n ∪QHard

n ) is a semi-honest zero-knowledge argument for the Meta-FBB functionality

FO′n�(Q
Easy
n ∪QHard

n )
zk [G].

Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

denote the following execution:

〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�(Q
Easy
n ∪QHard

n )(Yn)〉.

Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

= 1 denote the event that the verifier accepts at the end of this

execution. Then, it follows from Claim 5.3.1 and the completeness of ΠO′n�(Q
Easy
n ∪QHard

n ) that:

Pr
O,O′

[
For sufficient large n ∈ N, ∀Xn ∈ {0, 1}`(n), Yn = GOn(Xn),

Pr
[

Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

= 1
]
≥ 1− δc(n)

]
= 1, (5.2)

where the inner probability is taken over the random coins of the prover and the verifier in

the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

, and δc(n) is the completeness error.

Hybrid H1. This hybrid is identical to the previous one, except that H1 executes the
protocol

〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉. (5.3)

(Compared with the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

in H0, the only difference is that H1 remove

QHard
n from the verifier’s oracle.)

As mentioned in the Proof Sketch of Theorem 5.3.1, we want to show that the verifier

accepts in Execution (5.3) with probability close to that in the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.
This is formalized as Claim 5.3.2.

Claim 5.3.2. With probability 1 taken over the sampling of O and O′, for sufficiently large
n ∈ N, it holds that ∀Xn ∈ {0, 1}`(n) and Yn = GOn(Xn),

Pr[〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1] ≥ Pr

[
Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

= 1
]
− 1

n
, (5.4)

where the probabilities in the above inequality are taken over the random coins of the prover
and the verifier during the corresponding executions.

Proof. First, we remark that the “with probability 1” part in this claim is to ensure that
{O′n � (QEasy

n ∪ QHard
n )}n is one-way (see Claim 5.3.1). In the following, we proceed with

{O′n � (QEasy
n ∪QHard

n )}n being one-way (so the probabilities below are not taken over O and
O′).

By definition, any query5 q ∈ QHard
n is asked by V during Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

with proba-

bility < 1
t(n)·n . Let us define the following event:

5Technically, elements in QHard
n are query-answer pairs. From here on, we override the notation “∈” such

that q ∈ QHard
n also means that there exists a pair (q, ∗) in QHard

n .
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– EventNoHard: no q ∈ QHard
n is asked by V in Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

.

It follows from the union bound that

Pr
[
EventNoHard

]
≥ 1− 1

n
, (5.5)

where the probability is taken over the random coins of P and V in the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.
Now, we prove Inequality (5.4). In the following, for succinctness, let

– Exec0 denote the execution 〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉;

– Exec1 denote the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.

Then, we have (probabilities below are taken over the random coins over P and V in the
corresponding executions):

Pr[Exec1 = 1] ≥ Pr
[
Exec1 = 1

∣∣ EventNoHard
]
· Pr

[
EventNoHard

]
= Pr[Exec0 = 1

∣∣ EventNoHard] · Pr
[
EventNoHard

]
(5.6)

≥ Pr[Exec0 = 1]− Pr[¬EventNoHard] (5.7)

≥ Pr[Exec0 = 1]− 1

n
(5.8)

where Step 5.6 is due to the fact that Exec1 and Exec0 are identical assuming V does not make
any query q ∈ QHard

n , Step 5.7 follows from the basic probability inequality that Pr[A
∣∣ B] ·

Pr[B] ≥ Pr[A]− Pr[¬B], and Step 5.8 follows from Inequality (5.5).
This finishes the proof of Claim 5.3.2.

Claim 5.3.2 indicates that the verifier in Execution (5.3) accepts with “good” probability:

at least as large as the accepting probability of Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

minus 1/n. Thus, we will
have the desired contradiction if the Yn in Execution (5.3) is a false statement, namely

that Yn is not in the range of GO′n�Q
Easy
n (i.e. G(·) instantiated by the verifier’s oracle in

Execution (5.3)). This argument is formalized and proved in Claims 5.3.3 and 5.3.4, which
will eventually finish the proof of Theorem 5.3.1.

Claim 5.3.3. Let QEasy
n be defined as in Expression (5.1). For sufficiently large n ∈ N, the

following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n)

)]
≤ 1

2
+ negl(n). (5.9)

Note that the above probability is taken (additionally) over Xn
$←− {0, 1}`(n).

Claim 5.3.4. If Claim 5.3.3 holds, then Theorem 5.3.1 holds.

The proof of Claim 5.3.3 is quite involved. It constitutes the main technical challenge
of the current proof (of Theorem 5.3.1). Thus, we will deal with it in Section 5.3.4. In the
following, we show the proof of Claim 5.3.4.
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Proof of Claim 5.3.4. It follows from Expression (5.2) and Claim 5.3.2 that

Pr
O,O′

[
For sufficient large n ∈ N,∀Xn ∈ {0, 1}`(n), Yn = GOn(Xn),

Pr
[
〈PO′n�(Q

Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1

]
≥ 1− 1

n
− δc(n)

]
= 1. (5.10)

Following the same argument as for Claim 5.3.1, we can prove the one-wayness of the
oracle {O′n �QEasy

n }n as follows. For each (q,On(q)) ∈ QEasy
n , the On(q) is a randomly sampled

string from {0, 1}n. Therefore, no matter what Xn is, O′n � QEasy
n is always a randomly

sampled oracle (though QEasy
n is determined by Xn). It then follows from Lemma 5.3.1 that:

Pr
O,O′

[
∀Xn ∈ {0, 1}`(n), {O′n �QEasy

n }n∈N is one-way
]

= 1. (5.11)

By an averaging argument over Expressions (5.9) to (5.11), it follows that there exists
fixed sequences {Ön}n∈N, {Ö′n}n∈N and {Ẍn}n∈N6 such that for sufficiently large n ∈ N,

– {Ön � Q̈Easy
n }n is one-way; thus, GÖn�Q̈Easy

n is a PRG and ΠÖn�Q̈Easy
n is an HVZK protocol for

the membership of GÖn�Q̈Easy
n ; and

– Ÿn is not in the range of GÖn�Q̈Easy
n ; and

– Pr
[
〈P Ö′n�(Q̈

Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn), V Ö′n�Q̈
Easy
n (Ÿn)〉 = 1

]
≥ 1− 1

n
− δc(n), where the probability is

taken over the random coins of P and V .

Note that we can treat P Ö′n�(Q̈
Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn) as an oracle machine PÖ′n�Q̈
Easy
n , which has

(Q̈Easy
n , Ẍn, Ÿn) as non-uniform advice and makes only polynomially many queries to its

oracle Ö′n � Q̈Easy
n .

Since the completeness error δc(·) is negligible, the above means that PÖ′n�Q̈
Easy
n (with its non-

uniform advice) convinces the verifier with non-negligible probability on the following false
statement:

Ÿn ∈ GÖ′n�Q̈
Easy
n
(
{0, 1}`(n)

)
.

This contradicts the soundness of ΠÖ′n�Q̈
Easy
n , thus finishing the proof of Claim 5.3.4.

5.3.4 Proof of Claim 5.3.3

5.3.4.1 Proof Overview

Before diving into the proof, we first provide a high-level overview.
We assume for contradiction that Claim 5.3.3 is false and try to break the pseudo-

randomness of GOn . First, observe that if Yn = GOn(Xn) where Xn
$←− {0, 1}`(n), then our

assumption implies that Yn is in the range of GO′n�Q
Easy
n (·) with probability noticeably larger

than 1/2. Therefore, on an input Yn, if we can efficiently test if Yn ∈ GO′n�Q
Easy
n
(
{0, 1}`(n)

)
, we

should have some advantage in the PRG game for GOn(·). This strategy has the following
potential problems:

6Note that these values also fix the corresponding {Ÿn}n∈N, {Q̈Easy
n }n∈N and {Q̈Hard

n }n∈N as in the above.
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1. Without the preimage Xn, we cannot compute the set QEasy
n (see Expression (5.1)) using

only polynomially many queries to On;

2. If the input Yn /∈ GOn
(
{0, 1}`(n)

)
, the set Qn (thus QEasy

n ) is not even well-defined, as there
is no preimage Xn.

To avoid using Xn, we will run the HVZK simulator to obtain an estimate of the set QEasy
n

in the following way. Recall that QEasy
n contains the “easy” queries made by the verifier during

Exec
O′n�Qn
Xn,Yn

. By the HVZK property of the protocol ΠO′n�Qn , each query in QEasy
n should be

made with similar probability in the simulated execution Sim
O′n�Qn
V (Yn). Therefore, repeating

Sim
O′n�Qn
V (Yn) (polynomially) many times will give us a good estimate to QEasy

n .
However, without Xn, we cannot figure out the set Qn, which is necessary if we want

to run Sim
O′n�Qn
V (Yn). Fortunately, by a similar argument as that for Claim 5.3.1, we can

prove that the oracle {On}n and {O′n �Qn}n are identically distributed, even given Xn and

Yn = GOn(Xn). Therefore, running SimOn
V (Yn) will be just as good as running Sim

O′n�Qn
V (Yn).

Note that this also solves Problem 2, because the simulator still works when invoked on false
statements.

Now, we can construct the PRG distinguisher AOn
prg(Yn) as follows: on input Yn, AOn

prg(Yn)

obtains an estimate Q̃Easy
n to QEasy

n by running SimOn
V (Yn) polynomially many times. It then

samples a random function O′n : {0, 1}n → {0, 1}n, and outputs 1 if Yn ∈ GO′n�Q̃
Easy
n
(
{0, 1}`(n)

)
;

otherwise, it outputs 0. Note that although sampling O′ requires exponential time, AOn
prg(Yn)

only makes polynomially many queries to the oracle On.

If Yn = GOn(Xn) where Xn
$←− {0, 1}`(n), then by our assumption AOn(Yn) outputs 1 with

probability noticeably larger than 1/2; if Yn
$←− {0, 1}`(n)+1, then Yn is independent of On.

Moreover, using a similar argument as for Claim 5.3.1, we can prove that Yn is independent

of the oracle Q̃Easy
n (thus O′n � Q̃Easy

n ). Since the function GO′n�Q̃
Easy
n (·) stretch by 1 bit, the

random Yn will be in its range with probability 1/2. This means AOn(Yn) outputs 1 with
probability exactly 1/2.

This gives us the desired contradiction.

5.3.4.2 The Formal Proof

We now present the formal proof for Claim 5.3.3. First, we describe in Algorithm 1 how to
compute the set Q̃Easy

n , which is the estimate to QEasy
n by running SimOn

V (Yn) (see the above
proof overview ). In the following, we break Claim 5.3.3 into Claims 5.3.5 and 5.3.7, and
prove them one-by-one.

Claim 5.3.5. For sufficiently large n ∈ N, it holds that

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′

n�Q
Easy
n
(
{0, 1}`(n)

)]
≤ Pr
O,O′,Xn,Q̃

Easy
n

[
GOn(Xn) ∈ GO′

n�Q̃
Easy
n
(
{0, 1}`(n)

)]
+ negl(n). (5.12)

Proof. Let Yn = GOn(Xn). Let ExecOnXn,Yn denote the execution 〈POn(Xn, Yn), V On(Yn)〉. For

each qi ∈ {0, 1}n, let pi denote the probability that qi is asked by the verifier during ExecOnXn,Yn .

131



Algorithm 1: Sampling the Set Q̃Easy
n

Input: a string Yn ∈ {0, 1}`(n)+1.

Oracle: an oracle On mapping {0, 1}n to {0, 1}n.

Let 0 < c < 1 be a constant. This algorithm initializes a table T to the records of the
form

(
qi,Count[qi] = 0

)
for all qi ∈ {0, 1}n. T will be used to store the number that each

query being asked.
This algorithm repeats the following procedure for N = 3n/c2 times, using fresh random-
ness for each repetition:

– It invokes the HVZK simulator SimOn
V (Yn). Note that the simulated view View ←

SimOn
V (Yn) contains the query-answer pairs exchanged between V and On. For every

query-answer pair (qi,On(qi)) appeared in View, increase Count[qi] by 1.

For any query qi ∈ {0, 1}n, let p̂i denotes the frequency (i.e. the empirical mean) that qi is
asked by the verifier during the above N repetitions. The hybrid then computes the set
Q̃Easy
n as follows:

Q̃Easy
n :=

{(
qi,On(qi)

) ∣∣∣ p̂i ≥ 1

n · t(n)
− 2c

}
, where p̂i :=

Count[qi]

N
. (5.13)

We now define the following set:

Q̄Easy
n :=

{(
qi,On(qi)

) ∣∣ pi ≥ 1

t(n) · n
during ExecOnXn,Yn

}
. (5.14)

We remark that Q̄Easy
n is the same as QEasy

n (Expression (5.1)) but is w.r.t. ExecOnXn,Yn . In

Claim 5.3.6, we show that Q̄Easy
n and QEasy

n are identically distributed. Looking ahead, this
claim will allow us to replace QEasy

n with Q̄Easy
n , for which we can obtain a “good” estimate

(via the HVZK simulator) without knowing the preimage Xn.

Claim 5.3.6. Let QEasy be as in Expression (5.1). Let Q̄Easy be as in Expression (5.14). The
following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n)

)]
= Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

)]
(5.15)

Proof. We first claim that the following two ensembles are identically distributed:

{Xn, G
On(Xn),On}n∈N

i.d.
== {Xn, G

On(Xn),O′n �Qn}n∈N, (5.16)

where Xn
$←− {0, 1}`(n), On and O′n are random functions mapping {0, 1}n to {0, 1}n, and Qn

is defined as in hybrid H0 (the set of query-answer pairs during the evaluation of GOn(Xn)).
To show Expression (5.16), we only need to show that given {Xn}n, the oracles {On}n and
{O′n�Qn}n are identically distributed. This is true as they agree on all the query-answer pairs
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contained in Qn, and the queries (and their answers) not in Qn are identically distributed
(i.e., uniform).

Then, note that {Q̄Easy}n is determined (deterministically) by the left-hand side of Ex-
pression (5.16) in the same way as {Q}n is determined by the right-hand side of Expres-
sion (5.16). So {QEasy}n and {Q̄Easy}n are also identically distributed. Thus, Equation (5.15)
follows.

Next, we prove that the Q̃Easy
n defined in Algorithm 1 is a good estimate to the set Q̄Easy

n

in the sense that Q̄Easy
n is a subset of Q̃Easy

n except with negligible probability taken over the

sampling of Q̃Easy
n . For any qi ∈ {0, 1}n, let p̃i denote the probability that qi is asked by

the verifier in the simulated transcript View ← SimOn
V (Yn). Due to the HVZK property of

ΠOn , it holds that p̃i ≥ pi − negl(n). Recall the quantity p̂i from Expression (5.13), which is
the empirical mean of the frequency that pi is asked by the verifier in 3n/c2 repetitions of
SimOn

V (Y ). It then follows from the Chernoff bound that

Pr
p̂i

[
|p̂i − p̃i| ≥ c

]
≤ 1

2n
= negl(n). (5.17)

By definition, each qi ∈ Q̄Easy
n will be asked with probability pi ≥ 1

n·t(n)
during the execution

ExecOnXn,Yn . It then follows from Inequality (5.17) that for any qi ∈ Q̄Easy
n , the following holds

except with negligible probability taken over the sampling of p̂i:

p̂i ≥ p̃i − c = pi − c− negl(n) ≥ 1

n · t(n)
− c− negl(n) >

1

n · t(n)
− 2c,

which means qi ∈ Q̃Easy
n by the definition of Q̃Easy

n . Since |Q̄Easy
n | is a polynomial of n, it

follows from union bound that

Pr
Q̃Easy
n

[
Q̄Easy
n ⊆ Q̃Easy

n ] ≥ 1− negl(n)
(
⇔ Pr

Q̃Easy
n

[
Q̄Easy
n * Q̃Easy

n ] ≤ negl(n)
)
. (5.18)

Then we have

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

)]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

) ∣∣ Q̄Easy
n ⊆ Q̃Easy

n

]
· Pr

[
Q̄Easy
n ⊆ Q̃Easy

n

]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

) ∣∣ Q̄Easy
n ⊆ Q̃Easy

n

]
· Pr

[
Q̄Easy
n ⊆ Q̃Easy

n

]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr
O,O′,Xn,Q̃Easy

n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
+ negl(n) (5.19)

where Inequality (5.19) follows from Inequality (5.18).
Equation (5.15) and Inequality (5.19) finish the proof of Claim 5.3.5.

Remark 5.3.1 (On the Probability Space). Algorithm 1 run the HVZK simulator for the
protocol ΠOn. We want to point out that ΠOn is an HVZK protocol (i.e. the simulator exists)
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only if O = {On}n is one-way. Therefore, in the above proof, whenever we try to argue about
some probability of the form

Pr
O,Q̃Easy

n

[
Event(On, Q̃

Easy
n )

]
= value (5.20)

with the probability taken over both O and Q̃Easy
n (e.g. Inequalities (5.17), (5.18) and (5.19),

and some expressions in the next claim), the technically correct way is to say: with probability
1 taken over O = {On}n (thus being one-way), it holds that

Pr
Q̃Easy
n

[
Event(On, Q̃

Easy
n )

]
= value. (5.21)

Or, put in another way:

1. PrO [O is one-way] = 1; and

2. PrQ̃Easy
n

[
Event(On, Q̃

Easy
n )

∣∣O is one-way
]

= value.

However, the form of Expression (5.20) is also correct because it is actually a consequence

of Expression (5.21): let A denote the event Event(On, Q̃
Easy
n ), and B the event that O is one-

way, then

Pr
O,Q̃Easy

n

[A] = Pr
Q̃Easy
n

[A
∣∣B] · Pr

O
[B] + Pr

Q̃Easy
n

[A
∣∣ ¬B] · Pr

O
[¬B]

= Pr
Q̃Easy
n

[A
∣∣B] · 1 + Pr

Q̃Easy
n

[A
∣∣ ¬B] · 0 = Pr

Q̃Easy
n

[A
∣∣B] = value.

So, it is fine to use Expression (5.20).

Claim 5.3.7. For sufficiently large n ∈ N, it holds that

Pr
O,O′,Xn,Q̃Easy

n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
≤ 1

2
+ negl(n) (5.22)

Proof. At a high level, this proof goes as follows. Assuming for contradiction that the claim
does not hold, we show an adversary AOn

prg that breaks the pseudo-randomness of GOn(·).
This gives us the desired contradiction, because GOn(·) is a PRG given that O = {On}n∈N
is one-way.

Formally, we assume for contradiction that there exists a polynomial polyprg(·) such that,
for infinitely many n ∈ N, the following holds:

Pr
O,O′,Xn,Q̃Easy

n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
h

(
{0, 1}`(n)

)]
≥ 1

2
+

1

polyprg(n)
. (5.23)

On input Yn ∈ {0, 1}`(n)+1, AOn
prg proceeds as follows:

1. Compute Q̃Easy
n using Algorithm 1;
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2. AOn
prg samples O′n uniformly from all functions mapping {0, 1}n to {0, 1}n. With the

Q̃Easy
n from Step 1, AOn

prg now has the full description of O′n � Q̃Easy
n . AOn

prg then tests if

Y ∈ GO′n�Q̃
Easy
n
(
{0, 1}`(n)

)
. We remark that it takes exponential computation to sample

O′n. However, this step does not incur any calls to the oracle On.

3. Output: If Yn ∈ GO′n�Q̃
Easy
n
(
{0, 1}`(n)

)
, output 1; otherwise, output 0.

If Yn is the output of GOn(·) on a random Xn, then it follows from above description of AOn
prg

that

Pr
O,O′,Xn

[
AOn

prg

(
GOn(Xn)

)
= 1
]

= Pr
O,O′,Xn,Q̃Easy

n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
≥ 1

2
+ negl(n); (5.24)

If Yn
$←− {0, 1}`(n)+1, then the oracle O′n � Q̃Easy

n and Yn are independently distributed. We

emphasize that although Q̃Easy
n is obtained by running SimOn

V on Yn (for N = 3n/c2 times), for

each (q,On(q)) ∈ Q̃Easy
n , the answer On(q) is independent of Yn. Therefore, Yn is independent

of O′n�Q̃Easy
n . In this case, Yn is the range of the PRG with probability exactly 1/2. Formally,

Pr
O,O′,Yn

[
AOn

prg(Yn) = 1
]

= Pr
O,O′,Yn,Q̃Easy

n

[
Yn ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
= Pr

Yn,O′′n

[
Yn ∈ GO′′n

(
{0, 1}`(n)

)]
=

1

2
(5.25)

Expressions (5.24) and (5.25) imply that AOn
prg breaks the pseudo-randomness of GOn(·). This

completes the proof of Claim 5.3.7.

This completes the proof of Claim 5.3.3.

5.4 Proof-Based One-Way Functions

5.4.1 Definition

Definition 5.4.1 (Proof-Based OWFs). Let λ ∈ N be the security parameter. Let a(·),
b(·) and c(·) be polynomials. A proof-based one-way function consists of a function Fλ :
{0, 1}a(λ)×{0, 1}b(λ) → {0, 1}c(λ) and a protocol Π = (S,R) of a pair of PPT machines. We
use (X, Y ) ← 〈S(1λ, x), R(1λ, r)〉 to denote the execution of protocol Π where the security
parameter is λ, the inputs to S and R are x and r respectively, and the outputs of S and R
are X and Y respectively. Let Y = ⊥ denote that R aborts in the execution. The following
conditions hold:

– One-Wayness. The function {Fλ}λ is one-way in the following sense:

∗ Easy to compute: for all λ ∈ N and all (x, r) ∈ {0, 1}a(λ) × {0, 1}b(λ), Fλ(x‖r) can be
computed in polynomial time on λ.
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Figure 5.4.1: Functionality FF for Proof-Based OWFs

The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving the
input x ∈ {0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends x‖r to S,
and F (x‖r) to R.

∗ Hard to invert: for any non-uniform PPT adversary A, there exists a negligible function
negl(·) such that ∀r ∈ {0, 1}b(λ),

Pr[x
$←− {0, 1}a(λ), X∗ ← A

(
1λ, Fλ(x‖r)

)
: Fλ(x‖r) = Fλ(X

∗)] ≤ negl(λ),

– Completeness. The protocol Π computes the ideal functionality FF defined in Fig-
ure 5.4.1. Namely, ∀λ ∈ N, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X, Y )← 〈S(1λ, x), R(1λ, r)〉,
then X = x‖r and Y = Fλ(x‖r).

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there
exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉

:
Y 6= ⊥ and
@x s.t. Fλ(x‖r) = Y

]
≤ negl(λ),

– Zero-Knowledge. This property is defined by requiring only security against corrupted
R in the ideal-real paradigm for 2PC w.r.t. the ideal functionality FF in Figure 5.4.1.
Concretely, denote by REALΠ,A(z)(1

λ, x, r) the random variable consisting of the output
of S and the output of the adversary A controlling R in an execution of Π, where x is
the input to S and r to R. Similarly, denote by IDEALFF ,Sim(z)(1

λ, x, r) the corresponding
output of S and Sim from the ideal execution.7 Then there exist a PPT simulator Sim
such that for any PPT adversary A, ∀x ∈ {0, 1}a(λ), ∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,{

REALΠ,A(z)(1
λ, x, r)

}
λ∈N

c
≈
{

IDEALFF ,Sim(z)(1
λ, x, r)

}
λ∈N.

If the constructions of both F and Π makes only black-box access to other primitives, we call
this a black-box PB-OWF.

5.4.2 Our Construction

Following the high-level idea described in Section 5.1.2, we show that PB-OWFs can be
obtained assuming black-box access to OWFs.

Theorem 5.4.1 (Black-Box PB-OWFs from OWFs). There exists a PB-OWF that satisfies
Definition 5.4.1 and makes only black-box use of OWFs.

Our construction consists of a one-way function F f (Construction 5.4.1) together with a
protocol Πf

F (Protocol 5.4.1). The construction relies on the following building blocks:

– a one-way function f ;

7We refer the reader to [Gol04] for a detailed description of the ideal and real executions.
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Construction 5.4.1: One-Way Function F f

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) = δn(λ).
Let t(λ) = log2(λ) (see Remark 5.4.1). Assume that f : {0, 1}λ → {0, 1}m(λ) is a one-way
function. On input x ∈ {0, 1}nλ+(log(n)+m)k and r ∈ {0, 1}t log(n), F f parses them as

x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), and r = (b1, . . . , bt),

where |xi| = λ, |y′pi | = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t subset of
[n]. F f computes via its oracle access to f(·) the values (y1, . . . , yn), where yi = f(xi) for
all i ∈ [n]. Then, it computes s = (s1, . . . , sn) as follows:

1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then let si := yi for all i ∈ [n].

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

It finally outputs Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

– a zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve) as per Defi-
nition 5.2.2. Such protocols can also be constructed assuming only black-box access to
f .

It follows immediately from the description that our construction makes only black-box
access to OWFs.

Remark 5.4.1 (On the Parameters in Construction 5.4.1). The choice of t(λ) = log2(λ) is
somewhat arbitrary. In fact, any t(λ) = ω(log λ) works as long as (n−k− t) is some positive
polynomial of λ for sufficiently large λ. This is to ensure that we can prove one-wayness
in Lemma 5.4.1 and (1 − δ)t is negligible on λ, which is needed when we prove soundness
(Claim 5.4.1). We also remark that the role of r is to specify a size-t subset of [n]. The
canonical way of mapping r to a size-t subset of [n] may consume slightly less randomness
than |r| = t log(n). For simplicity, we forego further discussion and assume that there is
a deterministic bijection between {0, 1}t log(n) and all size-t subsets of [n]. Similarly, the
{p1, . . . , pk} are interpreted as a size-k subset of [n], though we assign each pi a length of
log(n).

Protocol 5.4.1: Protocol Πf
F for Our Proof-Based One-Way Function

Let f , m, n, t, and k be as in Construction 5.4.1.

Input: the security parameter 1λ is the common input. Sender S takes x ∈
{0, 1}nλ+(log(n)+m)k as its private input; receiver R takes r ∈ {0, 1}t·log(n) as its private
input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where |xi| = λ for all
i ∈ [n], |y′pj | = m for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S defines a
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2× n matrix M =

[
x1 · · · xn
y1 · · · yn

]
, where yi = f(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to the
value

α := M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

). (5.26)

3. R sends r to S.

4. S interprets r as a size-t subset (b1, . . . , bt) ⊆ [n]. S then defines Mr =

[
xb1 · · · xbt
yb1 · · · ybt

]
,

i.e. the columns of M specified by r. S also computes s = (s1, . . . , sn) in the way
specified in Construction 5.4.1. S sends to R the values Mr and s.

5. With Mr, R checks (via its oracle access to f(·)) if f(xbi) = ybi holds for all i ∈ [t]; R
also checks if sbi = ybi holds for all i ∈ [t]. If all the checks pass, R proceeds to next
step; otherwise, R halts and outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performs
Stage 4 honestly. Namely, S proves that the α committed at Stage 2 satisfies the
following conditions:

(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and

(b) the Mr does consist of the columns in M specified by r; and

(c) The s = (s1, . . . , sn) satisfies the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

We remark that these conditions can indeed be expressed a predicate φ on the α com-
mitted at Stage 2. For completeness, we show the formal definition of φ in Figure 5.4.2.
It is also worth noting that predicate φ needs to have the values r and s hard-wired,
which are defined at Stages 3 and 4 respectively. This is why we need a ΠZKCnP that
allows us to defer the definition of the predicate until the Prove stage (Definition 5.2.2).

7. (Receiver’s Output). R outputs Y = (s1, . . . , sn)‖(xb1 , . . . xbt)‖(b1, . . . , bt).

8. (Sender’s Output). S outputs X = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

5.4.3 Security Proof for Our PB-OWFs

5.4.3.1 Proof Overview

Before presenting the formal proof of security, we first provide an overview.
One-wayness, completeness, and ZK follow from rather standard techniques. In the

following, let us explain more about the soundness proof (shown formally as Lemma 5.4.2).
First, note that the r = {b1, . . . , bt} sent by R in Stage 3 is a size-t random subset of
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Figure 5.4.2: Predicate φλ,m,t,n,k,r,s(·)

Predicate φ has the values (λ,m, t, n, k, r, s) (as defined in Protocol 5.4.1) hard-wired. On
the input α, φλ,m,t,n,k,r,s(α) = 1 if and only if all of the following hold:

– the α can be parsed as M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where M =

[
x1 · · · xn
y1 · · · yn

]
such that

|xj| = λ and |yj| = m ∀j ∈ [n], |pi| = log(n) and |y′pi | = m ∀i ∈ [k]; and

– the values {p1, . . . , pk} form a size-k subset of [n]; and

– the Mr consists of the columns in M specified by r; and

– the s = (s1, . . . , sn) satisfy the following requirement (recall that the {b1, . . . , bt} are
from r):

∗ if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

∗ if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

[n]. It will overlap with {p1, . . . , pk} with negligible probability. Therefore, the Editing
condition will almost never be triggered during a real execution of Protocol 5.4.1, thus can
be safely ignored.

Stages 2 to 5 can be though as the following cut-and-choose procedure: the sender com-
putes {yi = f(xi)}i∈[n]; then the receiver checks t of them randomly. This ensures that a
malicious S∗ cannot cheat on more than k = δn of the yi’s. We prove this statement formally
in Claim 5.4.1, which requires us to handle extra technicalities due to the commit-and-prove
structure and Editing condition. But this claim implies that a non-aborting Y output by
an honest receiver contains at most k = δn many si’s that does not have a preimage under
f (except with negligible probability). Let us assume w.l.o.g. that there are exactly k such
“no-preimage” si’s, which can be denoted as {sp1 , . . . , spk} (i.e. we denote the indices of
these no-preimage si’s by {p1, . . . , pk}). Then, for each si where i ∈ [n] \ {p1, . . . , pk}, this si
must have (at least) one preimage under f(·). We denote an arbitrary preimage of such si
as f−1(si). In particular, if i is equal to some bj ∈ {b1, . . . , bt}, the Y already contains the
preimage for sbj , which is xbj .

We emphasize that, conditioned on Y 6= ⊥, we have {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. To
see this, recall that R checks at Stage 5 that ybi = f(xbi) and sbi = ybi for all bi ∈ {b1, . . . , bt}.
If there is a pi falling in the set {b1, . . . , bt}, then spi (= ypi) does not have a preimage under
f(·). Then, R will output Y = ⊥ at Stage 5.

With these observations, we show in the following how to construct x and r such that
F f (x‖r) = Y . At a high-level, we take advantage of Case 2. We will use the no-preimage spi ’s
together with their indices as the (pi, y

′
pi

) part in x. We will set r to the {b1, . . . , bt} contained
in Y . Since {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, the function F f will put the no-preimage spi ’s at
the positions specified by pi’s (according to Case 2), which will give us Y . Concretely, we
set:

x = (x′1, . . . , x
′
n)‖(p1, sp1), . . . , (pk, spk) and r = (b1, . . . , bt),
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where x′i’s are defined as follows: ∀i ∈ [n], x′i =


xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

.

We remark that f−1(si) may not be efficiently computable (indeed, f is a one-way
function). But the above proof only relies on the existence of f−1(si). Also, we have
{p1. . . . , pk} ∩ {b1, . . . , bt} = ∅. It then follows from the description in Construction 5.4.1 (in
particular, Case 2) that F f (x‖r) = Y .

5.4.3.2 The Full Proof

We now formally prove that the function F f in Construction 5.4.1 and Protocol 5.4.1 con-
stitute a black-box OWF with proof (as per Definition 5.4.1). In Lemma 5.4.1, we prove
that F f satisfies the one-wayness requirement in Definition 5.4.1. Given Construction 5.4.1,
the completeness of Protocol 5.4.1 follows immediately by construction. We then establish
the soundness and zero-knowledge property for Protocol 5.4.1 in Lemmas 5.4.2 and 5.4.3
respectively.

Lemma 5.4.1 (One-Wayness). The function F f in Construction 5.4.1 is one-way as defined
in Definition 5.4.1.

Proof. From the description of Construction 5.4.1, it is easy to see that F f is efficiently
computable. In the following, we show that it is also “hard to invert”.

Assume for contradiction that F f is not hard to invert, i.e. there exist a PPT AF and

r ∈ {0, 1}t log(n) such that for x
$←− {0, 1}nλ+(log(n)+m)k, AF inverts F f (x‖r) with non-negligible

probability. We show how to construct a PPT Af that inverts f with non-negligible proba-
bility.

On input y∗, Af first samples a string x
$←− {0, 1}nλ+(log(n)+m)k and computes the following

Y value as per Construction 5.4.1:

Y = F f (x‖r) = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

It then samples i∗
$←− [n] \ {b1, . . . , bt}, and gets Y ′ by substituting the si∗ in Y with y∗. Af

then feeds Y ′ to AF and receives X ′, which is supposed to be the preimage of Y ′ under F f .
In the following, we argue that X ′ contains the preimage of y∗ under f with non-negligible
probability.

Suppose that AF produces an X ′ satisfying F f (X ′) = Y ′. This X ′ must be of the
following form:

X ′ = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

Then, by Construction 5.4.1, we must have f(xi∗) = y∗ except for the “bad case” where
{p1, . . . , pk} ∩ {b1, . . . , bt} = ∅ and there is a pj = i∗ (in which case xi∗ could be arbitrary as
long as AF sets y′pj = y∗). However, since i∗ is picked uniformly from [n] \ {b1, . . . , bt}, the
“bad case” happens with probability ≤ 1/(n − t − k), which is 1/poly(λ) by our choice of
n, t, and k. Thus, if AF breaks the one-wayness of F f with some non-negligible probability
ε(λ), Af will break the one-wayness of f with probability ≥ (1− 1/poly(λ)) · ε(λ), which is
non-negligible.
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Lemma 5.4.2 (Soundness.). For every PPT machine S∗ and every auxiliary input z ∈
{0, 1}∗, there exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}t·log(n);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉

:
Y 6= ⊥ and
@x s.t. F f (x‖r) = Y

]
≤ negl(λ). (5.27)

Proof. Let us first define “non-trivial” S∗’s, which are the malicious provers that can make
the honest receiver accepts with non-negligible probability.

Definition 5.4.2 (Non-Trivial S∗). A PPT machine S∗ is non-trivial if there exists some
auxiliary input z ∈ {0, 1}∗ such that the following holds: there exits a polynomial poly(·) such
that for infinitely many λ ∈ N,

Pr
[

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : Y 6= ⊥

]
≥ 1

poly(λ)
. (5.28)

It is not hard to see that if a PPT machine S∗(1λ, z) is not non-trivial, then Inequal-
ity (5.27) holds immediately. Therefore, to prove Lemma 5.4.2, we only need to focus on the
non-trivial S∗’s.

For any Y of the form (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt), we define the following event:

– BadY : there are more than k = δn number of si’s such that @x s.t. f(x) = si.

In the following, we present a claim (Claim 5.4.1). We will first show how to prove Lemma 5.4.2
assuming that Claim 5.4.1 holds and then present its proof.

Claim 5.4.1. For every non-trivial S∗ with the z ∈ {0, 1}∗ satisfying Inequality (5.28), there
exists a negligible function negl(·) such that

Pr
[

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : BadY

∣∣ Y 6= ⊥] ≤ negl(λ). (5.29)

Consider the Y output by R from 〈S∗(1λ, z), R(1λ, r)〉, where S∗(1λ, z) is non-trivial and

r
$←− {0, 1}t log(n). If Y 6= ⊥, it must be of the following form:

Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt),

where si = f(xi) for all i ∈ {b1, . . . , bt}. Assuming that Claim 5.4.1 holds, to finish the proof
of Lemma 5.4.2, it suffices to show the following claim:

– Conditioned on Y 6= ⊥, if BadY does not happen, then there exist an x and an r such that
F f (x‖r) = Y .

Conditioned on Y 6= ⊥, Claim 5.4.1 implies that there are at most k = δn many si’s that do
not have a preimage under f (except with negligible probability). In the following, we assume
w.l.o.g. that there are exactly k such “no-preimage” si’s. We denote them as {sp1 , . . . , spk}
(i.e. we denote the indices of these no-preimage si’s by {p1, . . . , pk}). Then, for each si where
i ∈ [n] \ {p1, . . . , pk}, this si must have (at least) one preimage under f(·). We denote an
arbitrary preimage of such si as f−1(si). In particular, if i is equal to some bj ∈ {b1, . . . , bt},
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then Y already contains the preimage for sbj , which is xbj .
We emphasize that, conditioned on Y 6= ⊥, {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. To see this,

recall that R checks at Stage 5 that ybi = f(xbi) and sbi = ybi for all bi ∈ {b1, . . . , bt}. If
there is a pi falling in the set {b1, . . . , bt}, then spi (= ypi) does not have a preimage under
f(·). Then, R will output Y = ⊥ at Stage 5.

With these observations, we show in the following how to construct x and r such that
F f (x‖r) = Y , assuming that BadY does not happen. At a high-level, we take advantage of
Case 2. we will use the no-preimage spi ’s together with their indices as the (pi, y

′
pi

) part in
x. We will set r to the {b1, . . . , bt} contained in Y . Since {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, the
function F f will put the no-preimage spi ’s at the positions specified by pi’s (according to
Case 2), which will give us Y . Concretely, we set:

x = (x′1, . . . , x
′
n)‖(p1, sp1), . . . , (pk, spk) and r = (b1, . . . , bt),

where x′i’s are defined as follows: ∀i ∈ [n], x′i =


xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

. We remark

that f−1(si) may not be efficiently computable (indeed, f is a one-way function). But this
proof only relies on the existence of f−1(si). Also, we have {p1. . . . , pk}∩ {b1, . . . , bt} = ∅. It
then follows from the description in Construction 5.4.1 (in particular, Case 2) that F f (x‖r) =
Y .

In the following, we show the proof for Claim 5.4.1, which will complete the proof for
Lemma 5.4.2.

Proof of Claim 5.4.1. All the probabilities appearing in this proof are taken over the
following random procedure:

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉,

where S∗ and z are as described in Claim 5.4.1.
First, note that Pr[BadY

∣∣ Y 6= ⊥] · Pr[Y 6= ⊥] = Pr[BadY ∧ (Y 6= ⊥)]. Since S∗ is
non-trivial, we know from Inequality (5.28) that Pr[Y 6= ⊥] is non-negligible. Therefore, to
prove Inequality (5.29), it suffices to show

Pr[BadY ∧ (Y 6= ⊥)] ≤ negl(λ), (5.30)

which we prove in the following.
Consider the execution (·, Y ) ← 〈S∗(1λ, z), R(1λ, r)〉 where Y 6= ⊥. Observe that S∗ at

Stage 2 commits a value α8 of the form shown in Expression (5.26). For this execution, we
define the following sequence of events:

– E1: {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. The {pi}i∈[k] are contained in α and {bi}i∈[t] are
contained in Y .

– E2: ∀i ∈ [n], yi = si. The {yi}i∈[n] are contained in the second row of M (which is in turn

8This α is well-defined as BBCom is statistically-binding.

142



contained in α), and {si}i∈[n] are contained in Y .

– E3: The Mr sent by S∗ at Stage 4 indeed consists of the columns of M specified by
r = {b1, . . . , bt} (contained in Y ).

– E4: there are more than k = δn number of yi’s (contained in the second row of M) that
do not have a preimage under f(·).

We first claim:
Pr[E4 ∧ (Y 6= ⊥)] ≤ negl(λ). (5.31)

To see that, first notice the following:

Pr[E4 ∧ (Y 6= ⊥)] = Pr[E4 ∧ (Y 6= ⊥) ∧ E3] + Pr[E4 ∧ (Y 6= ⊥) ∧ E3]

≤ Pr[(Y 6= ⊥)
∣∣ E3 ∧ E4]︸ ︷︷ ︸

P1

+ Pr[(Y 6= ⊥) ∧ E3]︸ ︷︷ ︸
P2

.

We now show that both P1 and P2 are negligible. First, recall that R checks at Stage 5 if
yi = f(xi) for all columns [xi yi]

T contained in Mr. Thus, conditioned on E3, the receiver
does not abort only if the set r = {b1, . . . , bt} does not select any “bad” column [xi yi]

T in M
s.t. yi 6= f(xi). Moreover, E4 ensures that there are more than k = δn such “bad” columns
in M . Therefore, the probability P1 is smaller than (1− δ)t, which is negligible as 0 < δ < 1
is a constant and t is ω(log λ).

Also, observe that E3 was actually proved at Stage 6 (as Item 6b) by S∗ via the commit-
and-prove protocol ΠZKCnP. The soundness of ΠZKCnP implies that P2 is negligible.

Next, we make another claim:

Pr[BadY ∧ (Y 6= ⊥) ∧ E2] ≤ negl(λ). (5.32)

To prove this inequality, notice the following:

Pr[BadY ∧ (Y 6= ⊥) ∧ E2] = Pr[BadY ∧ (Y 6= ⊥) ∧ E2 ∧ E1] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2 ∧ E1]

≤ Pr[E1]︸ ︷︷ ︸
P3

+ Pr[(Y 6= ⊥) ∧ E2

∣∣ E1]︸ ︷︷ ︸
P4

.

We now show that both P3 and P4 are negligible. Recall that E1 is the event that the
set {p1, . . . , pk} contained in α does not overlap with r = {b1, . . . , bt}. First, note that
the ΠZKCnP proof at Stage 6 ensures that the set {p1, . . . , pk} is a size-k subset of [n] (i.e.
Item 6a) except with negligible probability. Also, observe that the r is a size-t random subset
of [n] that is sampled independently of {p1, . . . , pk}. Therefore, E1 happens with probability
≤ (1− δ)t + negl(λ), which is negligible.

According to Construction 5.4.1, if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅ (which is exactly the
event E1), then it must hold that yi = si for all i ∈ [n] (which is exactly E2). Also, recall
that this condition is enforced by the BBProve performed by S∗ at Stage 6 (see Item 6c).
The soundness of the ΠZKCnP guarantees that, conditioned on E1, if E2 does not hold, then
R will abort with overwhelming probability. Therefore, P4 is negligible.

143



We are now ready to derive Inequality (5.30):

Pr[BadY ∧ (Y 6= ⊥)] = Pr[BadY ∧ (Y 6= ⊥) ∧ E2] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2]

= Pr[E4 ∧ (Y 6= ⊥) ∧ E2] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2] (5.33)

≤ Pr[E4 ∧ (Y 6= ⊥)] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2]

≤ negl(λ) (5.34)

where Equation (5.33) follows from the fact that, conditioned on E2, the events BadY and E4

are identical. Also, note that Inequality (5.34) follows from Inequalities (5.31) and (5.32).
This finishes the proof of Claim 5.4.1 and thus also the proof for Lemma 5.4.2.

Lemma 5.4.3 (Zero-knowledge). Protocol 5.4.1 satisfies the zero-knowledge property as in
Definition 5.4.1.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator
Sim for any PPT malicious receiver R∗. At a high-level, such a simulator can be constructed
as follows. Sim will use the simulator of the commit-and-prove protocol ΠZKCnP at Stages 2
and 6. This allows Sim to finish the interaction without knowing the sender’s input x.

Formally, we will show a sequence of hybrids starting from the real execution between
the honest sender and R∗, and show that the last hybrid is essentially the simulator we want.
We use OutHi to denote the output of hybrid Hi.

Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the
corrupted receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs.
This hybrid is exactly the real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 2, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication
withR∗, where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Definition 5.2.2).

– At Stage 6, instead of doing the proof honestly, H1 uses the strategy of Sim2in its com-
munication with R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see
Definition 5.2.2).

OutH0

c
≈ OutH1 : This is due to the ZK property of ΠZKCnP.

The simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim
is identical to H1, except that

– Sim does not need to execute Stage 1;

– Upon receiving r at Stage 3, Sim sends it to the idea functionality FF f , and receives back
the value Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt);

– At Stage 4, Sim sets M̃r =

[
xb1 · · · xbt
sb1 · · · sbt

]
, and sends to R the values M̃r and s =

(s1, . . . , sn), where the si’s are those contained in Y .
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We remark that, unlike H1, Sim does not need to know the input x to the sender; the Y that
it obtained from FF f contains all the necessary information to finish its interaction with R∗.
In particular, although the xbi ’s in M̃r and the s now come from the Y that Sim obtained
from the ideal functionality, they are identically distributed to the ones generated by the
honest sender in a real execution. It then follows that the output of Sim is identical to H1.

This finishes the proof for Lemma 5.4.3.

5.5 Proof-Based Pseudo-Random Generators

We can also define proof-based pseudo-random generators (PB-PRGs) in a similar way as
for PB-OWFs. It consists of a two-input function Gg(·, ·) and a protocol Πg

G = (Sg, Rg)
such that for any PRG g, Gg(·, r) is a PRG for any choice of r, and Πg

G satisfies the same
completeness, soundness, and ZK requirements as in Definition 5.4.1 but w.r.t. Gg.

Our PB-PRG can be constructed by simply replacing the oracle OWF f with a PRG g
in both Construction 5.4.1 and Protocol 5.4.1 (our PB-OWF construction). There is one
caveat: the output Y of Construction 5.4.1 contains the preimage xbi for ybi (or sbi). While
this is fine for one-wayness, such a Y will not be pseudo-random, because an adversary can
always learn if Y is in the range of Gg(·, r) by testing whether ybi = g(xbi). To fix this, in the
output Y , we will place xbi in the position where we originally put ybi (and we can drop the
(xb1 , . . . , xbt) part from Y ). We will show that this modification lead to a valid PB-PRG.

In the following, we present the definition, construction, and the security proof for PB-
PRGs.

5.5.1 Definition

Definition 5.5.1 (Proof-Based PRGs). Let a(λ), b(λ) and c(λ) be polynomials on λ. A
proof-based pseudorandom generator consists of function Gλ : {0, 1}a(λ)+b(λ) → {0, 1}c(λ) and
a protocol Π = (S,R) involving a pair of PPT machines. We use (X, Y )← 〈S(1λ, x), R(1λ, r)〉
to denote the execution of protocol Π where the security parameter is λ, the inputs to S and
R are x and r respectively, and the outputs of S and R are X and Y respectively. Let Y = ⊥
denote that R aborts in the execution. The following conditions hold:

– Pseudo-randomness. For every r ∈ {0, 1}b(λ), Gλ(·‖r) is a PRG on its first input. That
is, it is efficiently computable, length stretching, and

{x $←− {0, 1}a(λ) : Gλ(x‖r)}λ∈N
c
≈ {Uc(λ)}λ∈N.

– Completeness. ∀λ ∈ N, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X, Y )← 〈S(1λ, x), R(1λ, r)〉,
then X = x‖r and Y = Gλ(x‖r).

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there
exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉

:
Y 6= ⊥ and
@x s.t. Gλ(x‖r) = Y

]
≤ negl(λ)
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where the probability is taken over the random sampling of r,and the randomness used by
S∗ and R.

– Zero-Knowledge. This property is defined by requiring the security against corrupted R
in the ideal-real paradigm for 2PC w.r.t. the ideal functionality FG, which is obtained by
replacing F with G in Figure 5.4.1. Namely, there exist a PPT simulator Sim such that
for any PPT adversary A, ∀x ∈ {0, 1}a(λ), ∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,{

REALΠ,A(z)(1
λ, x, r)

}
λ∈N

c
≈
{

IDEALFG,Sim(z)(1
λ, x, r)

}
λ∈N .

where REALΠ,A(z)(1
λ, x, r) and IDEALFG,Sim(z)(1

λ, x, r) are defined in the same way as in
Definition 5.4.1.

5.5.2 Our Construction

We now present our construction for proof-based PRGs, thus establishing the following
theorem.

Theorem 5.5.1. There exists a PB-PRG that satisfies Definition 5.5.1 and makes only
black-box use of PRGs.

Our construction consists of a PRG Gg (Construction 5.5.1) together with a black-box
protocol (Protocol 5.5.1) that proves the membership for Gg. The construction relies on the
following building blocks:

– A pseudo-random generator g;

– A zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve) as per Defini-
tion 5.2.2. Such protocols can be constructed assuming only black-box access to g.

Construction 5.5.1: Pseudo-Random Generator Gg

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) =
δn(λ). Let t(λ) = log2(λ). Assume that g : {0, 1}λ → {0, 1}m(λ) is a PRG. On input
x ∈ {0, 1}nλ+k(log(n)+m) and r ∈ {0, 1}t log(n), Gg parses them as

x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), and r = (b1, . . . , bt),

where |xi| = λ, |y′pi | = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t subset of
[n]. Gg outputs Y = (z1, . . . , zn), which are computed as follows:

1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then zi =

{
xi i ∈ {b1, . . . , bt}
g(xi) otherwise

;

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then zi :=


xi i ∈ {b1, . . . , bt}
y′i i ∈ {p1, . . . , pk}
g(xi) otherwise

.
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Protocol 5.5.1: Protocol Πg
G for Our Proof-Based Pseudorandom Generator

Let g, m, n, k and t be as in Construction 5.5.1.

Input: both parties take the security parameter 1λ as the common input. Sender S takes
a string x ∈ {0, 1}nλ+(log(n)+m)k as private input; receiver R takes a string r ∈ {0, 1}t·log(n)

as private input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where |xi| = λ for all
i ∈ [n], |y′pj | = m for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S defines a

2× n matrix M =

[
x1 · · · xn
y1 · · · yn

]
, where yi = g(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to the
value

α := M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

). (5.35)

3. R sends r to S.

4. S interprets r as a size-t subset {b1, . . . , bt} ⊆ [n], and defines Mr =

[
xb1 · · · xbt
yb1 · · · ybt

]
,

i.e. the columns of M specified by r. S also computes (z1, . . . , zn) in the way specified
in Construction 5.5.1. S sends to R the values Mr and (z1, . . . , zn).

5. With Mr, R checks (via its oracle access to g(·)) if g(xbi) = ybi holds for all i ∈ [t]. If
all the checks pass, R proceeds to next step; otherwise, R halts and outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performs
Stage 4 honestly. Namely, S proves that the α committed at Stage 2 satisfies the
following conditions:

(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and

(b) the Mr does consist of the columns in M specified by r; and

(c) the (z1, . . . , zt) satisfy the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then zi =

{
xi i ∈ {b1, . . . , bt}
yi otherwise

;

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then zi :=


xi i ∈ {b1, . . . , bt}
y′i i ∈ {p1, . . . , pk}
yi otherwise

.

Similar as in Protocol 5.4.1, these conditions can be expressed a predicate on α.

7. (Receiver’s Output). R outputs Y = (z1, . . . , zn).

8. (Sender’s Output). S outputs X = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

It follows immediately from the description that our construction makes only black-box
access to PRGs. In Section 5.5.3, we show that it satisfies definition Definition 5.5.1.
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5.5.3 Proof of Security

In this section, we prove that the function Gg in Construction 5.5.1 and Protocol 5.5.1 con-
stitute a black-box PRG with proof (as per Definition 5.5.1). In Lemma 5.5.1, we prove that
Gg satisfies the pseudo-randomness requirement in Definition 5.5.1. Given the description of
Construction 5.5.1, the completeness of Protocol 5.5.1 follows immediately by construction.
We then establish the soundness and zero-knowledge property in Lemmas 5.5.2 and 5.5.3
respectively.

Lemma 5.5.1 (Pseudo-randomness ofGg). Construction 5.5.1 satisfies the pseudo-randomness
property defined in Definition 5.5.1.

Proof (Sketch). We first argue that Gg is length-stretching. To see that, note that the input
and output are of the following length respectively:

|X| = |x|+ |r| = δnm+ δn log(n) + λn+ t log(n), and |Y | = nm− tm+ λt,

where 0 < δ < 1 is a constant, t = log2(λ) (see also Remark 5.4.1), and m and n are
polynomials on λ. Note that we have control over choice of m and n. For example, If we
set n = Ω(λ2) and |m| = Ω(log n), then the dominating term for the input length will be
δmn, and the dominating term for the output length will be mn. Since 0 < δ < 1, Gg is
length-stretching.

The pseudo-randomness of Gg follows from standard hybrid arguments. The only point
that requires extra attention is that the input to Gg has two parts x and r, and we need to
prove the pseudo-randomness of its output for all r ∈ {0, 1}b(λ). Note that since x is sampled
randomly, Case 1 in Construction 5.5.1 happens with overwhelming probability. Therefore,
the pseudo-randomness of Gg (for all r) can be reduced to the pseudo-randomness of g by
standard hybrid technique. We omit the details.

Lemma 5.5.2 (Soundness). Protocol Πprgp in Protocol 5.5.1 satisfies the soundness property
defined in Definition 5.5.1. Namely, for every PPT machine S∗ and every auxiliary input
z ∈ {0, 1}∗, there exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}t log(n);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉

:
Y 6= ⊥ and
@x s.t. Gg(x‖r) = Y

]
≤ negl(λ). (5.36)

Proof. Let us first define “non-trivial” S∗’s, which are the malicious provers that can make
the honest receiver accept with non-negligible probability.

Definition 5.5.2 (Non-Trivial S∗). A PPT machine S∗ is non-trivial if there exists some
auxiliary input z ∈ {0, 1}∗ such that the following holds: there exits a polynomial poly(·) such
that for infinitely many λ ∈ N,

Pr
[

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : Y 6= ⊥

]
≥ 1

poly(λ)
. (5.37)

It is not hard to see that if a PPT machine S∗(1λ, z) is not non-trivial for all z ∈ {0, 1}∗,
then Inequality (5.36) holds immediately. Therefore, to prove Lemma 5.5.2, we only need to
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focus on the non-trivial S∗’s.
For any (·, Y ) ← 〈S∗(1λ, z), R(1λ, r)〉 such that Y 6= ⊥, the Y can then be parsed as

(z1, . . . , zn) such that |zi| = λ for i ∈ {b1, . . . , bt} and |zi| = m for i ∈ [n]\{b1, . . . , bt}. Recall
that {b1, . . . , bt} is the size-t subset of [n] specified by r. Given such a Y and r, we say that
a zi is “no-preimage” if it satisfies the following requirements:

– zi is in the set {z1, . . . , zn} \ {zb1 , . . . , zbt}; and

– there does not exist any x ∈ {0, 1}λ such that g(x) = zi

We then define the following event

– BadY,r: there are more than k = δn number of “no-preimage” zi’s in Y .

In the following, we present a claim. We will first show how to prove Lemma 5.5.2 assuming
that Claim 5.5.1 holds, and then present its proof.

Claim 5.5.1. For every non-trivial S∗ with the z ∈ {0, 1}∗ satisfying Inequality (5.37), there
exists a negligible function negl(·) such that

Pr
[

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : BadY,r

∣∣ Y 6= ⊥] ≤ negl(λ). (5.38)

Consider the Y output by R from 〈S∗(1λ, z), R(1λ, r)〉, where S∗(1λ, z) is non-trivial

and r
$←− {0, 1}t log(n). If Y 6= ⊥, it must be of the form (z1, . . . , zn), where |zi| = λ for

i ∈ {b1, . . . , bt} and |zi| = m for i ∈ [n] \ {b1, . . . , bt}. Recall that {b1, . . . , bt} is the size-t
subset of [n] specified by r.

Assuming that Claim 5.5.1 holds, to finish the proof of Lemma 5.5.2, it suffices to show
the following claim:

– Conditioned on Y 6= ⊥, if BadY,r does not happen, then there exist an x and a r such that
Gg(x‖r) = Y .

Conditioned on Y 6= ⊥, Claim 5.5.1 implies that there are at most k = δn no-preimage
zi’s (except with negligible probability). In the following, we assume w.l.o.g. that there are
exactly k no-preimage zi’s. We denote them as {zp1 , . . . , zpk} (i.e. we denote the indices of
these no-preimage zi’s by {p1, . . . , pk}). Then, for each zi where i ∈ [n] \ {p1, . . . , pk}, this
zi must have (at least) one preimage under g(·). We denote an arbitrary preimage of such
zi as g−1(zi). By definition, a no-preimage zi is not in the set {zb1 , . . . , zbt}. Therefore, we
must have that {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅.

With these observations, we show in the following how to construct x and r such that
Gg(x‖r) = (z1, . . . , zn). At a high-level, we take advantage of Case 2. At a high-level, we
will put those no-preimage zi’s together with their indices as the (pi, y

′
pi

) part of x. We will
use the above r = {b1, . . . , bt} from R. Since {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, Gg will put the
no-preimage zpi ’s at position pi’s (are required by Case 2). This will give us the desired Y .
Concretely, we set:

x := (x′1, . . . , x
′
n)‖(p1, zp1), . . . , (pk, zpk), r := (b1, . . . , , bt)
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where x′i’s are defined as follows: ∀i ∈ [n], x′i :=


zi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
g−1(zi) otherwise

.

We remark that g−1(zi) may not be efficiently computable (indeed, g is a PRG). But this is
fine since we only require the existence of g−1(zi). Also, note that {p1. . . . , pk}∩{b1, . . . , bt} =
∅. It then follows from the description in Construction 5.4.1 (in particular, Case 2) that
Gg(x‖r) = Y .

In the following, we show the proof for Claim 5.5.1, which will complete the proof for
Lemma 5.5.2.

Proof of Claim 5.5.1. All the probabilities appearing in this proof are taken over the
following random procedure:

r
$←− {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉,

where S∗ and z are as described in Claim 5.5.1.
First, note that Pr[BadY,r

∣∣ (Y 6= ⊥)] · Pr[Y 6= ⊥] = Pr[BadY,r ∧ (Y 6= ⊥)]. Since S∗ is
non-trivial, we know from Inequality (5.37) that Pr[Y 6= ⊥] is non-negligible. Therefore, to
prove Inequality (5.38), it suffices to show

Pr[BadY,r ∧ (Y 6= ⊥)] ≤ negl(λ), (5.39)

which we prove in the following.
Consider the execution (·, Y ) ← 〈S∗(1λ, z), R(1λ, r)〉 where Y 6= ⊥. Observe that S∗ at

Stage 2 commits a value α9 of the form shown in Expression (5.35). For this execution, we
define the following sequence of events:

– E1: {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. The {pi}i∈[k] are those contained in α and {bi}i∈[t] are
those specified by R’s input r.

– E2: ∀i ∈ [n] \ {b1, . . . , bt}, yi = zi. The yi’s are contained in the second row of M (which
is in turn contained in α), and zi’s are contained in Y .

– E3: the Mr sent by S∗ at Stage 4 does consist of the columns of M specified by r =
{b1, . . . , bt}.

– E4: there are more than k = δn number of yi’s (contained in the second row of M) that
satisfy the following requirement: there does not exist any x ∈ {0, 1}λ such that g(x) = yi.

We first claim:
Pr[E4 ∧ (Y 6= ⊥)] ≤ negl(λ) (5.40)

To see that, first notice the folloing:

Pr[E4 ∧ (Y 6= ⊥)] = Pr[E4 ∧ (Y 6= ⊥) ∧ E3] + Pr[E4 ∧ (Y 6= ⊥) ∧ E3]

≤ Pr[(Y 6= ⊥)
∣∣ E3 ∧ E4]︸ ︷︷ ︸

P1

+ Pr[(Y 6= ⊥) ∧ E3]︸ ︷︷ ︸
P2

9This α is well-defined as BBCom is statistically-binding.
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We now show that both P1 and P2 are negligible. First, recall that R checks at Stage 5 if
yi = g(xi) for all columns [xi yi]

T contained in Mr. Thus, conditioned on E3, the receiver
does not abort only if the set r = {b1, . . . , bt} does not select any “bad” column [xi yi]

T in M
s.t. yi 6= f(xi). Moreover, E4 ensures that there are more than k = δn such “bad” columns
in M . Therefore, the probability P1 is smaller than (1− δ)t, which is negligible as 0 < δ < 1
is a constant and t is ω(log λ).

Also, observe that E3 was actually proved at Stage 6 (as Item 6b) by S∗ via the commit-
and-prove protocol ΠZKCnP. The soundness of ΠZKCnP implies that P2 is negligible.

Next, we make another claim:

Pr[BadY,r ∧ (Y 6= ⊥) ∧ E2] ≤ negl(λ) (5.41)

To prove this inequality, notice the following:

Pr[BadY,r ∧ (Y 6= ⊥) ∧ E2] = Pr[BadY,r ∧ (Y 6= ⊥) ∧ E2 ∧ E1] + Pr[BadY,r ∧ (Y 6= ⊥) ∧ E2 ∧ E1]

≤ Pr[E1]︸ ︷︷ ︸
P3

+ Pr[(Y 6= ⊥) ∧ E2

∣∣ E1]︸ ︷︷ ︸
P4

We now show that both P3 and P4 are negligible. Recall that E1 is the event that the
set {p1, . . . , pk} contained in α does not overlap with r = {b1, . . . , bt}. First, note that the
ΠZKCnP proof at Stage 6 ensures that, except with negligible probability, the set {p1, . . . , pk}
is a size-k subset of [n] (i.e. Item 6a). Also, observe that the r is a size-t random subset of
[n] that is sampled independently of {p1, . . . , pk}. Therefore, E1 happens with probability
≤ (1− δ)t + negl(λ), which is negligible.

According to Construction 5.4.1, if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅ (which is exactly the
event E1), then it must hold that yi = zi for all i ∈ [n] \ {b1, . . . , bt} (which is exactly E2).
Also, recall that this condition is enforced by the BBProve performed by S∗ at Stage 6 (see
Item 6c). The soundness of the ΠZKCnP guarantees that, conditioned on E1, if E2 does not
hold, then R will abort with overwhelming probability. Therefore, P4 is negligible.

Before proving Inequality (5.39), we need one more claim:

Pr[BadY,r
∣∣ E2] ≤ Pr[E4

∣∣ E2] (5.42)

To prove the above inequality, recall that if BadY,r happens, then there are more than k = δn
many zi’s in {z1, . . . , zn}\{zb1 , . . . , zbt} that do not have any preimage under g(·). Moreover,
conditioned on E2, we known that zi = yi for all i ∈ [n] \ {b1, . . . , bt}. In this case, BadY,r
implies that there are more than δn many yi’s, among all the yi’s whose index lies in [n] \
{b1, . . . , bt}, that do not have any preimage under g(·). Thus, there are definitely more than
k = δn many yi’s (among all the yi’s contained in the second row of M) that do not have
any preimage, which is exactly the event E4. Therefore, conditioned on E2, BadY,r implies
E4. This gives us Inequality (5.42).
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We are now ready to derive Inequality (5.39):

Pr[BadY ∧ (Y 6= ⊥)] = Pr[BadY ∧ (Y 6= ⊥) ∧ E2] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2]

≤ Pr[E4 ∧ (Y 6= ⊥) ∧ E2] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2] (5.43)

≤ Pr[E4 ∧ (Y 6= ⊥)] + Pr[BadY ∧ (Y 6= ⊥) ∧ E2]

≤ negl(λ) (5.44)

where Inequality (5.43) follows from Inequality (5.42). Also, note that Inequality (5.44)
follows from Inequalities (5.40) and (5.41). This finishes the proof of Claim 5.5.1.

This finishes the proof for Lemma 5.5.2.

Lemma 5.5.3 (Zero-Knowledge). Protocol Πg
G in Protocol 5.5.1 satisfies the zero-knowledge

property defined in Definition 5.5.1.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator
Sim for any PPT malicious receiver R∗. At a high-level, such a simulator can be constructed
as follows. Sim will use the simulator of the commit-and-prove protocol ΠZKCnP at Stages 2
and 6. This allows Sim to finish the interaction without knowing the sender’s input x.

Formally, we will show two hybrids H0 and H1, where the H0 is the real execution between
the honest sender and R∗, and show that H1 is essentially the simulator we want. We use
OutHi to denote the output of hybrid Hi.

Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the
corrupted receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs.
This hybrid is exactly the real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 2, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication
withR∗, where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Definition 5.2.2).

– At Stage 6, instead of doing the proof honestly, H1 uses the strategy of Sim2 in its com-
munication with R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see
Definition 5.2.2).

OutH0

c
≈ OutH1 : This is due to the ZK property of ΠZKCnP.

The Simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim
is identical to H1 except for the following changes:

– Sim does not need to execute Stage 1;

– Upon receiving r = (b1, . . . , bt) at Stage 3, Sim sends it to the idea functionality FGg , and
receives back Y = (z1, . . . , zn).

– At Stage 4, Sim (with its oracle access to g(·)) sets M̃r =

[
zb1 · · · zbt
g(zb1) · · · g(zbt)

]
, and sends

M̃r and (z1, . . . , zn) to R∗.
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We remark that, unlike H1, Sim does not need to know the input x to the sender; the values
(z1, . . . , zn) it obtains from FGg contain all the information to finish its execution with R∗.
In particular, although the zi’s now come from the ideal functionality, they are identically
distributed to the ones generated by the honest sender. Thus, the M̃r is also identically
distributed to the Mr in H1. It Then follows that the output of Sim is identical to H1.

This finishes the proof for Lemma 5.5.3.

5.6 Proof-Based Collision-Resistant Hash Families

We now discuss proof-based collision-resistant hash families (PB-CRHFs). As mentioned in
Section 5.1.3, the definition and construction of PB-CRHF follow the same template as our
PB-OWFs, except that we need to handle the Editing condition differently.

5.6.1 Definition

Our PB-CRHF consists of an oracle machine H(·) and an oracle protocol Π
(·)
H . As mentioned

in Section 5.1.3, the H(·) will be instantiated as a hash family. That is, given a collision-
resistant hash family H′, we first run its KGen′ to sample a function hi ∈ H′, and then
instantiate H(·)’s oracle as hi. Therefore, Hhi is also a hash family whose KGen simply runs
KGen′ for H′ (and samples a random string z that we will describe later).

Once H(·) and Π
(·)
H are instantiated with an hi

$←− KGen′(1λ), we can start talking about
security. Same as in Definition 5.4.1, Hhi takes two inputs x and r. We require that,
for all r, Hhi(·, r) is collision-resistant on its first input. The protocol Πhi

H satisfies similar
completeness, soundness, and ZK requirements as those in Definition 5.4.1. We provide the
formal definition in Definition 5.6.1.

Definition 5.6.1 (Proof-Based CRHF). Let a(λ), b(λ) and c(λ) be polynomials on λ such
that a(λ) + b(λ) < c(λ). A proof-based collision-resistant hash family (PB-CRHF) is a
function family H = {Hi}i∈I for some index set I, where Hi : {0, 1}a(λ) × {0, 1}b(λ) →
{0, 1}c(λ). For each Hi ∈ H, there exists a protocol Πi = (S,R)i consisting of a pair of PPT
machines. H is a collision-resistant hash family in the following sense.:

– Collision-Resistance. H has PPT algorithms KGen and Eval, which satisfy the same
requirements as in Definition 5.2.1; it further satisfies the following collision-resistant
requirement: for any non-uniform PPT adversary A, there exists a negligible function
negl(·) such that ∀r ∈ {0, 1}b(λ),

Pr[i
$←− KGen(1λ), (x, x′)← A(1λ, i) : x 6= x′ ∧Hi(x‖r) = Hi(x′‖r)] ≤ negl(λ).

Let (X, Y )← 〈S(1λ, x), R(1λ, r)〉i denote the execution of the protocol Πi, where the security
parameter is λ, the input to S and R are x and r respectively, and the output of S and R
are X and Y respectively. Let Y = ⊥ denote the event that R aborts in the execution. The
following properties for protocol Πi = (S,R)i hold with overwhelming probability over the

choice of i
$←− KGen(1λ) (see also Remark 5.6.1):
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Figure 5.6.1: Functionality FHi for Proof-Based CRHFs

The ideal functionality FHi interacts with a sender S and a receiver R. Upon receiving
the input x ∈ {0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FHi sends x‖r
to S, and Hi(x‖r) to R.

– Completeness. ∀λ ∈ N, ∀i ∈ {0, 1}λ, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ),

Pr
[
(X, Y )← 〈S(1λ, x), R(1λ, r)〉i : X = x‖r and Y = Hi(x‖r)

]
= 1,

where the probability is taken over the the randomness used by S and R.

– Soundness. For every PPT machine S∗ and every auxiliary input aux ∈ {0, 1}∗, there
exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, aux), R(1λ, r)〉i

:
Y 6= ⊥ and
@x s.t. Hi(x‖r) = Y

]
≤ negl(λ)

where the probability is taken over the random sampling of i and r,and the randomness
used by S∗ and R.

– Zero-Knowledge. This property is defined as only requiring security against corrupted
R in the ideal-real paradigm for 2PC w.r.t. the ideal functionality FHi in Figure 5.6.1.
Namely, there exist a PPT simulator Sim such that for any PPT adversary A, ∀aux ∈
{0, 1}∗, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ),

REALΠi,A(aux)(x, r)
c
≈ IDEALFHi ,Sim(aux)(x, r),

where REALΠi,A(aux)(x, r) and IDEALFHi ,Sim(aux)(x, r) are defined in the same way as in Def-
inition 5.4.1.

If both the constructions of H and Π only involve black-box access to other primitives, we
obtain black-box PB-CRHF.

Remark 5.6.1. Similar to the case of PB-OWFs, the protocol here is meant to be a ZK
system for the range-membership of the function. But note that H in the above PB-CRHF
is a family of functions, and the concrete function Hi is sampled by running the key gen-
eration algorithm. So, the range-membership is well-defined only when Hi is sampled and
fixed. Therefore, the security properties of protocol Πi will depend on the sampling of Hi

by running KGen. This idea already appears explicitly in the definition of collision-resistant
hash families—the adversary’s winning probability in the collision-resistant game depends on
the random procedure of executing KGen.

5.6.2 Merkle Tree Related Notation

As mentioned in the technical overview (Section 5.1.3), our construction makes use of the
Merkle hashing tree [Mer90]. In this part, we setup related notation.
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Notation for Perfect Binary Trees. A perfect binary tree is a binary tree in which all
interior nodes have two children and all leaves have the same depth. A perfect binary tree of
hight ` has 2`+1 − 1 nodes, where 2` of the nodes are leaves. There exist canonical methods
(e.g., array representation) to index the nodes in the tree, which forms a bijection between
the nodes and the set [2`+1 − 1]. We will use the indices to refer to the corresponding nodes
under this bijection. In particular, we require that the first 2` indices (i.e. [2`]) represent the
leaves.

For each node k ∈ [2`+1 − 1], vk denotes the content/value of this node. For a leaf node
i ∈ 2`, the sibling path of i consists of the value vi together with the values of all the siblings
of nodes on the path from i to the root. We use Pi to denote the sibling path of leaf i,
and Ind(Pi) denotes the collection of indices of the nodes on path Pi. For k sibling paths
(Pi1 , . . . ,Pik), we use Ind(i1, . . . , ik) to denote the collection of indices of the nodes on all
these paths, i.e.,

Ind(i1, . . . , ik) := Ind(Pi1) ∪ . . . ∪ Ind(Pi1). (5.45)

We remark that Ind(i1, . . . , ik) is a set of indices for nodes. It does not depend on the
contents/values of nodes. Once the structure of the tree is fixed, this set is then fixed, even
if the tree contains only dummy nodes.

Merkle Trees. A Merkle hashing tree [Mer90] is a special type of perfect binary tree
constructed as follows. Let n = 2l for some integer l. Given a hash function h : {0, 1}2m →
{0, 1}m and a length-mn string X, the Merkle tree MTh,m(X) is a size-(2n−1) perfect binary
tree of the following form:

– X is parsed as n blocks (x1, . . . , xn), each xi is of length m. These xi’s are the contents
of the n leaves;

– (Merkle Consistency.) For any non-leaf node k and its left child ` and right child r,
their contents satisfy the equation h(vk) = h(v`‖vr).

A sibling path Pi (i ∈ [n]) is said to be Merkle-consistent if all the nodes on this path satisfy
the above Merkle consistency condition.

5.6.3 Our Construction

The formal construction is provided in Construction 5.6.1 and Protocol 5.6.1. We follow
the high-level idea described in Section 5.1.3 with the following modifications. Instead of
hashing the (x1, . . . , xn) (contained in x) separately, we build a Merkle tree using them as
the leaves. In Construction 5.6.1, Pi denotes the sibling path from leaf xi to the root;
Ind(b1, . . . , bt) denotes the set of indices of the nodes on path Pb1 , . . . ,Pbt . (See Section 5.6.2
for relevant notation.) In Protocol 5.6.1, the receiver checks t leaves and their corresponding
sibling paths. This ensures that there are at least (n − k) “good” leaves, in the sense that
there are valid sibling paths from the Merkle root to them. In the Editing case, this will
allow us to perform preimage editing by planting the vpi values on the k “bad” paths to
obtain a (partial) tree consistent with the root t1 contained in Y . Note that we also hash
the Λ in Step 1c. As explained in Section 5.1.3, this is to prevent the adversary from taking
advantage of preimage editing to find collisions.
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Construction 5.6.1: Collision-Resistant Hash Family Hhi
z

Let m(λ) and n(λ) be polynomials of λ. Assume w.l.o.g. that is n a power of 2 (i.e.,
n = 2` for some `). Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let t(λ) = log2(λ)
(see also Remark 5.4.1). Let H′ = {hi}i∈I be a collision-resistant hash family where
hi : {0, 1}2m(λ) → {0, 1}m(λ). Denote its key generation as KGen′.

– Key Generation. On input 1λ, sample a function from H′ by running hi ← KGen′(1λ);

sample a random string z
$←− {0, 1}m(λ); outputs (i, z) as the hash key.

– Evaluation. On input x ∈ {0, 1}nm+k(log(2n)+m)+3m and r ∈ {0, 1}t log(n), the evaluation
algorithm parses them as:

x = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ, r = (b1, . . . , bt), (5.46)

where |xi| = |vpi | = m, {pi}i∈[k] is a size-k subset of [2n − 1], and {bi}i∈[t] is a size-t
subset of [n]. The set {bi}i∈[t] specifies t leaves out of all the n leaves.

The algorithm builds a perfect binary tree T that has n leaves, where all the nodes are
dummies. As discussed in Section 5.6.2, the indices of the nodes in T are well-defined,
even though T now contains only dummy nodes. The evaluation procedure outputs
Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt), which is computed as follows:

1. Non-Editing: If τ = z or hi(τ) 6= hi(z) or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} 6= ∅:

(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaves. For any other
node in T , its content is the hash value under hi on the concatenation of its left
child and right child. Denote the root value as t1.

(b) For i ∈ [t], Pbi is the sibling path of leaf xbi in the above tree T ;
(c) Use hi to hasha the following Λ value to a length-m string denoted as t2:

Λ = (p1, vp1), . . . , (pk, vpk)‖τ‖µ.

2. Editing: if τ 6= z and hi(τ) = hi(z) and Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅:

(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaf positions in T .
Then, fill the tree bottom up, following the rule for Merkle tree (i.e. the hashing
of two children nodes’ contents is the parent node’s content), with the following
exception: for node pi ∈ {p1, . . . , pk}, it fills node pi with the vpi contained in x
instead of the hash of the children of node pi. Denote the root value as t1.

(b) For i ∈ [t], Pbi is defined as the sibling path of leaf xbi in the tree T ;
(c) Set t2 = µ (recall that µ is contained in x);

aNote that the input to hi should have length 2m. But |Λ| > 2m. This can be handled using domain-
extension techniques, e.g., the Merkle-Damg̊ard transformation [Mer90, Dam90].

It is also worth noting that Construction 5.6.1 and Protocol 5.6.1 work for an x of fixed
length. But since we hash the {xi}i∈[n] part using a Merkle tree, we can handle x with a
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Protocol 5.6.1: Protocol Πhi
z for Our PB-CHRF

Let H′, m, n, δ, t and k be as in Construction 5.6.1. Let ΠZKCnP = (BBCom,BBProve) be a
black-box commit-and-prove protocol. For a function defined by (i, z) from the PB-CRHF
in Construction 5.6.1, this protocol proceeds as follows. Both parties take the security
parameter 1λ as the common input. Sender S takes a string x ∈ {0, 1}nm+k(log(n)+m)+3m as
private input; receiver R takes a string r ∈ {0, 1}t log(n) as private input.

1. S parses x as (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ (in the same manner as in Expres-
sion (5.46)). S build a Merkle tree MT ′h,m(x) using (x1, . . . , xn) as the leaves (this is
identical to Step 1a). Denote the root of this tree as tx.

2. S and R execute BBCom(ν), the Commit stage of ΠZKCnP, where S commits to the
following value

ν := tx‖(p1, . . . , pk). (5.47)

3. R sends the value r.

4. S parses r as (b1, . . . , bt) where each bi is of length log(n). With the values x and r, S
evaluates the function Hhi

z as per Construction 5.6.1 to compute the following Y , which
it sends to R:

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).

5. R checks if Pbi is Merkle-consistent for all i ∈ [t]. R aborts if any of the check fails.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that the ν
committed in Stage 2 satisfies the following conditions:

(a) the {p1, . . . , pk} in ν form a size-k subset of [2n− 1], where k = δn; and

(b) the tx contained in τ is equal to t1, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.

7. (Receiver’s Output). R outputs Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).

8. (Sender’s Output). S outputsX = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ‖(b1, . . . , bt).

various-length {xi}i∈[n] part (which dominates the length of x). To maintain security, we
simply include the height of the Merkle tree in Y .

5.6.4 Proof of Security

In this section, we prove the following theorem.

Theorem 5.6.1. The construction shown in Construction 5.6.1 and Protocol 5.6.1 is a PB-
CRHF (as per Definition 5.6.1) that makes only black-box use of a CRHF H′. Moreover, the
PB-OWF is private-coin (resp. public-coin) if H′ is private-coin (resp. public-coin).

It follows immediately from the description that our construction makes only black-box
use of H′, and it also satisfies the complement requirement as per Definition 5.6.1. In the
following, we first prove the collision resistance of Construction 5.6.1 in Lemma 5.6.1. Then,
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we establish the soundness and zero-knowledge property for Protocol 5.6.1 in Lemma 5.6.2
and Lemma 5.6.3, respectively.

Lemma 5.6.1 (Collision Resistance). Construction 5.6.1 satisfies the collision-resistant re-
quirement as in Definition 5.6.1. Moreover, Construction 5.6.1 is private-coin (resp. public-
coin) if H′ is private-coin (resp. public-coin).

Proof. We first show that the function is input-compressing. According to Construction 5.6.1.
the input is of length:

|X| = |x|+ |r| = nm+ k(log(2n) +m) + 3m+ t log(n),

and the output is the length

|Y | = 2m+ 2`m+ t log(n),

where ` = log(n) is the height of the Merkle tree T . Thus, we have |X| > |Y |.

Public-Coin v.s. Private-Coin. Let us recall the key generation algorithm in Con-
struction 5.6.1. In addition to running the KGen′ of H′, it only sample a random string
z ∈ {0, 1}m(λ), which is a public-key operation. Therefore, this key generation procedure is
private-coin (resp. public-coin) if H′ is private-coin (resp. public-coin).

Collision Resistance. Assume for contradiction that there is a PPT adversary A that
breaks the collision-resistance property of Construction 5.6.1.

Consider a function Hhi,z sampled from the family, where hi ← KGen(1λ) and z
$←−

{0, 1}2m. First, we claim that A cannot output an X that contains a τ satisfying τ 6= z and
hi(τ) = hi(z); otherwise, A can be used to break the collision resistance of h. Therefore, we
assume in the following that the purported collision pair X,X ′ output by A will not trigger
the Editing condition.

Conditioned on the event that the Editing condition is not triggered, if Hhi,z(X) =
Hhi,z(X

′), X and X ′ must differ in the (x1, . . . , xn) part. This is because the output of Hhi,z

contains the values (b1, . . . , bt) (thus, the collision will not happen here); it also contains a
hash of the value Λ = (p1, vp1), . . . , (pk, vpk)‖τ‖µ. If X and X ′ have different Λ’s, A breaks
the collision-resistant property of hi.

The above argument implies that X and X ′ contain different (x1, . . . , xn) values, but
Hhi(X) and Hhi(X ′) contain the same t1, the root of the Merkle tree on (x1, . . . , xn). There-
fore, A can be converted to a collision-finder that breaks the collision-resistant of hi (in the
Step 1a Merkle tree).

Completeness follows immediately from the description of Construction 5.6.1 and Proto-
col 5.6.1. In the following, we prove soundness (Lemma 5.6.2) and zero-knowledge (Lemma 5.6.3).

Lemma 5.6.2 (Soundness). Protocol 5.6.1 satisfies the soundness requirement defined in
Definition 5.6.1.

Proof. First, let Badt1 denote the following event: there does not exist an n-leaf full and
complete binary tree rooted at t1 (contained in Y ) such that at least (1 − δ)n leaves with
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their corresponding sibling paths satisfy the Merkle consistency requirement.
At a high-level, the proof for Lemma 5.6.2 follows the approach of that for Lemma 5.4.2.

First, we assert in Claim 5.6.1 that it is impossible (except with negligible probability) that
R accepts the execution and the event Badt1 happens. Second, we show that whenever R
accepts and Badt1 does not happen, there must exist a valid preimage for the Y learned by
R. These two claims together imply Lemma 5.6.2.

Claim 5.6.1. For every PPT machine S∗ and every auxiliary input aux ∈ {0, 1}∗, there
exists a negligible function negl(·) such that

Pr
[

r
$←− {0, 1}t log(n); (·, Y )← 〈S∗(1λ, aux), R(1λ, r)〉 : (Y 6= ⊥) ∧ Badt1

]
≤ negl(λ),

where the probability is taken over the random sampling of r,and the randomness used by S∗

and R.

Proof. We claim that, except with negligible probability, the t1 in Y that S∗ sends in Stage 4
is equal to the tx in ν committed in Stage 2. Due to the soundness of the BBProve performed
in Stage 6, the following holds with overwhelming probability

t1 = tx, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.

Moreover, since the values {bi}ti=1 form a random size-t subset of [n], the event Ind(b1, . . . , bt)∩
{p1, . . . , pk} = ∅ will only happen with probability ≤ (1− δ)t (recall that k = δn), which is
negligible as 0 < δ < 1 is a constant and t = ω(log λ). This implies that t1 = tx must happen
with overwhelming probability. Therefore, the following holds:

Pr [(Y 6= ⊥) ∧ Badt1 ]

= Pr [(Y 6= ⊥) ∧ Badt1 ∧ (t1 = tx)] + Pr [(Y 6= ⊥) ∧ Badt1 ∧ (t1 6= tx)]

= Pr[Badt1 ∧ (t1 = tx)] · Pr
[
(Y 6= ⊥)

∣∣ Badt1 ∧ (t1 = tx)
]

+ negl(λ),

where the probability is taken over the same random procedure as in Claim 5.6.1. To prove
Claim 5.6.1, it now suffices to show the following

Pr
[
(Y 6= ⊥)

∣∣ Badt1 ∧ (t1 = tx)
]
≤ negl(λ).

Note that Y 6= ⊥ represents the event that R does not abort until the end of the protocol.
Therefore, we only need to prove that

Pr
[
R does not abort until Stage 5 (inclusively)

∣∣ Badt1 ∧ t1 = tx
]
≤ negl(λ). (5.48)

Assuming that Badt1 happens and that t1 = tx, R does not abort in Stage 5 only if its
challenge r = (b1, . . . , bt) (in Stage 3) hits the leaves that have sibling paths consistent with
the root t1 (= tx). Since tx is fixed before r (a random subset of [n]), this event happens
with probability < (1 − δ)t, which is negligible as 0 < δ < 1 is a constant and t = ω(λ).
Therefore, Inequality (5.48) holds.

This finishes the proof for Claim 5.6.1.
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Figure 5.1: A tree with 16 leaves, 8 Bad leaves, and 4 Bad (non-leaf) nodes. Solid lines
indicate consistent hash relation and dashed lines indicate inconsistent hash relation.

In the following, we show the existence of a preimage for Y given that Y 6= ⊥ and that
Badt1 does not happen. Note that Y can be parsed as

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt),

where (Pb1 , . . . ,Pbt) are consistent with t1. Since Badt1 does not happen, there is a perfect
binary tree consistent with the root t1 that has at most δn “Bad” leaves. On the path from
the root t1 to each Bad leaf, there exists a node of minimal depth (i.e. closest to the root)
for which the hash consistency breaks (i.e. this node is not equal to the hash value of the
concatenation of its two children). We call such nodes Bad nodes. Note that the number
of Bad nodes cannot exceed δn. (See Figure 5.1 for an example.) W.l.o.g., we assume that
there are exact k = δn Bad nodes, and denote their indices in the tree as {p1, . . . , pk}. We
refer to the content of node pi as vpi for all i ∈ [k].

Now we describe how to find a preimage X = x‖r for Y . We set r as the (b1, . . . , bt) part
in Y . The xi’s in x are defined in the following way: if the i-th leaf in the above binary tree is
not Bad, set xi to be the contents of this leaf; otherwise, set xi to be a dummy string (e.g. 0λ).
The (pi, vpi)’s consist of the indices and corresponding contents Bad nodes. We set τ such
that it triggers the Editing condition in Construction 5.6.1 (i.e. τ 6= z and h(τ) = h(z))10.
And µ is set to the value t2 in Y .

To see why the above x‖r is a valid preimage for Y under Hhi
z , just follow the evaluation

procedure in Construction 5.6.1. The Editing condition is triggered due to the way we set
τ and the fact that the set of Bad indices {p1, . . . , pk} does not overlap with Ind(b1, . . . , bt)
(i.e. the indices of nodes on the sibling paths of leaves {xb1 , . . . , xbt}). Therefore, when
building the Merkle tree, we will place vpi once we reach node pi. Since all the non-Bad
nodes in this Merkle tree are identical to the above binary tree, they necessarily share the
same root value t1. Finally, t2 value will also be put in the correct position in Y as t2 = µ

10Note that such a τ exists with overwhelming probability. Because hi maps length-2m strings to length-

m ones, it cannot be injective on more than 2m strings in its domain. Since we pick z
$←− {0, 1}2m, with

probability at least (1− 1
2m

), there exists a τ 6= z s.t. h(z) = h(τ).
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in the Editing case.

Lemma 5.6.3 (Zero-Knowledge). Protocol 5.6.1 satisfies the zero-knowledge requirement
defined in Definition 5.6.1.

Proof (Sketch). This lemma follows from an argument similar to that for Lemma 5.4.3. The
ideal-world simulator Sim use S1 (the Commit-stage simulator for ΠZKCnP) and S2 (the
Prove-stage simulator for ΠZKCnP) to go through Stage 2 and Stage 6 respectively. Note
that Sim receives R’s challenge r in Stage 3. It sends this r to the ideal functionality to learn
Y . Similar as in the proof of Lemma 5.4.3, this Y value contains all the information to finish
the remainder of the simulated interaction with R.

5.7 Proof-Based One-Way Functions Supporting Pred-

icates

Following the approach discussed in Section 5.1.4, we now describe how to extend our PB-
OWF construction from Section 5.4 to support a predicate.

5.7.1 Definition

Definition 5.7.1 (PB-OWFs Supporting Predicates). Let a(λ), b(λ) and c(λ) be polyno-
mials on λ. Let φ be an efficiently computable predicate. A proof-based one-way function
supporting φ, denoted as (F,Πφ), consists of a function Fλ : {0, 1}a(λ)×{0, 1}b(λ) → {0, 1}c(λ)

and a protocol Πφ = 〈S,R〉φ of a pair of PPT machines. The function F satisfies the fol-
lowing one-wayness requirement:

– One-Wayness. Fλ satisfies the same one-way requirement as in Definition 5.4.1. That
is, for all r ∈ {0, 1}b(λ), Fλ(·, r) is one-way.

In the protocol Π, both parties take the security parameter (which we omit henceforth for
simplicity) and a predicate φ as public input. The private input for S and R are x and r,
respectively. At the end of the protocol, S outputs X, and R outputs Y ‖u. The protocol
satisfies the following requirements:

– Completeness. The protocol Π computes the ideal functionality FF defined in Fig-
ure 5.7.1. Namely, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X, Y ‖u) ← 〈S(x), R(r)〉φ,
then X = x‖r, Y = Fλ(X) and u = φ(α).

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there
exists a negligible function negl(·) such that

Pr

[
r

$←− {0, 1}b(λ);
(·, Y ‖u)← 〈S∗(z), R(r)〉φ

:
Y 6= ⊥ and
@x s.t. (Fλ(x‖r) = Y ∧ φ(α) = u)

]
≤ negl(λ)

where the probability is taken over the random sampling of r, and the randomness used by
S∗ and R.
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– Zero-Knowledge. This property is defined in the same way as the ZK property of Defi-
nition 5.4.1, but w.r.t. the ideal functionality specified in Figure 5.7.1.

Figure 5.7.1: Functionality FF,φ for Proof-Based OWFs Supporting Predicates

The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving the
input x ∈ {0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends x‖r to
S, and (F (x‖r), φ(α)) to R, where α is the prefix of x with the length satisfying φ’s input
requirement.

5.7.2 Our Construction

To show how we can modify the constructions in Section 5.4 to satisfy the above requirements,
we first review Construction 5.4.1 and Protocol 5.4.1 from a new perspective.

A New Interpretation of Our PB-OWF Construction. Recall that the input to F f

in Construction 5.4.1 takes the following form:

x = (x1, . . . , xn)︸ ︷︷ ︸
α

‖ (p1, y
′
p1

), . . . , (pk, y
′
pk

)︸ ︷︷ ︸
β

, and r = (b1, . . . , bt).

On an input x = α‖β‖r, we can think of Construction 5.4.1 as applying the following 3 steps:

– Encoding: apply some encoding Enc on α. In Construction 5.4.1, Enc(α) simply parti-
tions α to xi’;

– Hardness-Inducing: perform some one-way operation on Enc(α) to ensure that the
output is hard to invert. In Construction 5.4.1, this one-way operation is just applying
the oracle OWF f to each element of Enc(α) = (x1, . . . , xn). In Protocol 5.4.1, the sender
reveals some portion of Enc(α) specified by the receiver’s challenge r. These openings
allow R to check if S performs honestly. However, this can only ensure that S∗ does not
cheat for a large portion of Enc(α); there is still a small part (say, a δ fraction) of Enc(α)
on which S∗ can cheat. Therefore, we need the following Editing step;

– Editing: when β and r satisfy some predefined condition, we will edit the output of last
step using the values contained in β. This step is critical to ensure the existence of a
preimage under F f for the Y learned by the receiver: as mentioned in last step, there is
a small portion of Enc(α) on which S∗ may cheat. This Editing step essentially extends
the pre-image set of Y from a single Enc(α) to all the strings within a δ fractional distance
to the valid Enc(α). In this way, Y 6= ⊥ will always have a preimage even if S∗ can cheat
on a δ fraction of Enc(α) without being caught by R.

In light of the above perspective, we now discuss how to make the construction support
ZK proofs for an arbitrary predicate φ(·). Very roughly, we will pick a more robust Encoding
approach that binds the sender to a unique α after the execution of the Compute stage.
Moreover, it should be flexible enough to allow the sender to prove that this α satisfies
some predicate φ(·) later in the Prove stage. The Hardness-Inducing step will also need
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some change to accommodate our new Encoding method (such that we do not hurt the
one-wayness). In the following, we elaborate on our construction.

The New Function F f . We use a (n, t)-perfectly secure verifiable secret sharing VSS as
our new Enc. Note that VSS is a randomized procedure. Fortunately, x is a random string.
So we will draw randomness from some part (denoted as η) of x. That is, we encode α as
Enc(α; η) := VSSShare(α; η) = ([α]1, . . . , [α]n), where {[α]i} are the VSS shares. Now, we want
to apply some Hardness-Inducing on Enc(α; η). Note that it does not suffice anymore to
apply the oracle OWF f on these shares (like what we did in Construction 5.4.1), because
these VSS shares are correlated (thus, α may be recoverable from {f([α]i)}i∈[n]). Therefore,
we instead apply Naor’s commitment to these shares, which can be built from OWF in black-
box. Note that Naor’s commitment also requires randomness, which will be obtained from
other parts of x. For the Editing step, we use the same approach as in Construction 5.4.1.
We formalize the above intuition by showing the complete description of our new F f in
Construction 5.7.1.

The New Protocol Πf . The protocol that computes our new F f follows the same template
as Protocol 5.4.1. The formal description is given in Protocol 5.7.1. We now explain it by
comparing it with Protocol 5.4.1. The R in Protocol 5.7.1 additionally takes a string ρ as
input. Looking ahead, this ρ will be used as the first message for Naor’s commitment. The
sender parses its input x as:

x = α‖η‖ (γ1, . . . , γn)︸ ︷︷ ︸
γ

‖(p1, c
′
p1

), . . . , (pk, c
′
pk

).

Same as before, S first encodes α using a (n, t)-perfectly secure VSS scheme with randomness
η. Denote the resulting shares as {[α]i}i∈[n]. S then commits to these shares (in parallel) using
Naor’s commitment, using ρ as the first message and {γ}i∈[n] as the respective randomness.
That is, S define the following values:

c1 = Comρ([α]1; γ1), . . . , cn = Comρ([α]n; γn).

Note that S has not sent to R these values yet. These {ci}i∈[n] values should be viewed as
the analogs of {yi}i=[n] in Stage 1 of Protocol 5.4.1. One can think of them as the result of
our new Encoding and Hardness-Inducing performed on the α part in x.

Recall that the protocol Πf needs to additionally let R learn φ(α). To do that, we use
the “MPC-in-the-head” technique [IKOS07, GLOV12]. The sender emulates “in his head” n
parties {Pi}i∈[n], where Pi’s input is the i-th share [α]i. These parties execute a (n, t)-perfectly
secure MPC protocol for computing φ(α). Let {v1, . . . , vn} denote the views of the n parties
during the MPC execution. The sender appends these views to the ν committed in BBCom,
and later reveals those specified by receiver’s r (see below). From now on, Protocol 5.7.1
proceeds in an identical way as Protocol 5.4.1 except for the “consistency-checking” step:

– in Stage 5 of Protocol 5.4.1, R only checks yi = f(xi) for the (xi, yi) pairs revealed by S
according to r;

– while in Stage 7 of Protocol 5.7.1, the revealed {cbi , [α]bi , vbi}i∈[t] values (according to r)
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have a slightly more complex relation due to our new Encoding and Hardness-Inducing
method. Here, R needs to verify that cbi is indeed a valid Naor’s commitment to [α]bi ,
and that the revealed {[α]bi , vbi}i∈[t] values are consistent MPC inputs and views for the
corresponding parties. This is crucial for us to obtain soundness in this setting (proved
formally in Lemma 5.7.2).

Other parts of the Compute phase (especially, how the Editing is handled) are done in the
same way as Protocol 5.4.1. The ZK property can be proved as before, plus the (n, t)-privacy
of the VSS and MPC protocol.

Formal Description. We present the formal construction in Construction 5.7.1 and Pro-
tocol 5.7.1, relying on the following building blocks (in addition to the f and ΠZKCnP for the
construction in Section 5.4).

– Naor’s commitment scheme Com [Nao90], which is a two-round statistically-binding com-
mitment making only black-box use of f .

– (n+ 1, t)-perfectly secure VSS scheme VSS = (VSSShare,VSSRecon) (see Definition 2.6.1);

– A (n, t)-perfectly secure MPC protocol (see Definition 2.7.1 and Remark 2.7.1);

For the VSS and MPC protocols, we require that t is a constant fraction of n such that
t ≤ n/3. There are known constructions satisfying these properties [BGW88, CDD+99].

Construction 5.7.1: The New One-Way Function F f (·)

Let n(λ) be a polynomial on λ. Let both t and k be a constant fraction of n such that
k < t ≤ n/3. On input X, F f (X) is be computed as follows:

1. Parse the input X as the following two parts:

x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

), and r‖ρ where r = (b1, . . . , bt),

where |α| = λ, |ρ| = 3λ, and {pi}i∈[k] and {bi}i∈[t] should be long enough such that they
form a size-k subset and a size-t subset of [n], respectively (also see Remark 5.4.1).

Remark 5.7.1. (On the length of η, γ and c′pi’s) The η should be long enough such
that it can be used as the random tape in the VSS execution. The γ should be long
enough such that it can be used as the randomness used in Step 3 to commit to the VSS
shares of α. Each c′pi is of the same length as a commitment to a VSS share (i.e., the
length of ci in Step 3). Given a concrete VSS scheme, the length of these values can be
determined accordingly.

2. Emulate n+1 (virtual) players {Pi}i∈[n+1] to execute the VSS protocol, where the input
to Pn+1 (i.e., the Dealer) is α. At the end of the execution, each player Pi (i ∈ [n])
obtains a share of α denoted as [α]i. The randomness for this part is taken from η.

3. For i ∈ [n], apply Naor’s commitment Com on each [α]i, where the first message for
Com is set to ρ, and the randomness used by the committer is from γ = (γ1, . . . , γn).
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Namely, it generates:

c1 = Comρ([α]1; γ1), . . . , cn = Comρ([α]n; γn).

4. Compute (s1, . . . , sn) as follows:

(a) if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then let si := ci for all i ∈ [n].

(b) if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
c′i i ∈ {p1, . . . , pk}
ci i ∈ [n] \ {p1, . . . , pk}

.

5. Output Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt).

Protocol 5.7.1: Protocol Πf
F,φ

Input: the security parameter 1λ is the common input. The sender S takes x as its private
input; the receiver R takes (r, ρ) as its private input.

1. R sends ρ to S;

2. S parses the input as x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

). S computes the (c1, . . . , cn)
as defined in Step 3 of Construction 5.7.1. Note that {ci}i∈[n] are supposed to be the
commitments to the VSS shares {[α]i}i∈[n].

3. S emulates in its head n (virtual) players {Pi}i∈[n], where Pi’s input is [α]i. These n
parties execute the the (n, t)-perfectly secure MPC protocol for the following function-
ality: the functionality reconstructs α from {[α]i}i∈[n] (collected from each party), and
sends φ(α) to all the parties as their output. For i ∈ [n], let vi be the view of party Pi
during the MPC execution.

4. S and R executes BBCom(ν), the Commit stage of ΠZKCnP, where S commits to the
value

ν := (c1, . . . , cn)‖(v1, . . . , vn)‖(p1, c
′
p1

), . . . , (pk, c
′
pk

). (5.49)

5. R sends r to S.

6. S interprets r as a size-t subset {b1, . . . , bt} ⊆ [n]. S computes the s = (s1, . . . , sn) as
defined in Step 4 of Construction 5.7.1. S sends the values s and {(cbi , [α]bi , γbi , vbi)}i∈[t].
(Recall that [α]bi is the value committed in cbi using randomness γbi .)

7. Upon receiving the values S sends in last stage, R checks:

(a) Comρ([α]bi ; γbi) = cbi holds for all i ∈ [t]; and

(b) {[α]b1 , . . . , [α]bt} are consistent w.r.t. the VSS procedure; and

(c) {vb1 , . . . , vbt} constitute consistent (as per Definition 2.7.2) views w.r.t. the MPC
execution as described in Stage 3. We remark that this includes checking that [α]bi
is the prefix of vbi .
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If all the checks pass, R proceeds to next step; otherwise, R halts and outputs ⊥.

8. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performed
Stage 6 honestly. That is, S proves that the ν committed at Stage 4 satisfies the
following conditions:

(a) the values {p1, . . . , pk} contained in ν form a size-k subset of [n]; and

(b) the (cb1 , . . . , cbt) revealed by S in Stage 6 do consist of the subset of {ci}i∈[n] (con-
tained in ν) specified by r (sent by R in Stage 5); and

(c) the (vb1 , . . . , vbt) revealed by S in Stage 6 do consist of the subset of {vi}i∈[n] specified
by r; and

(d) The s = (s1, . . . , sn) satisfies the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = ci for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
c′i i ∈ {p1, . . . , pk}
ci i ∈ [n] \ {p1, . . . , pk}

.

9. (Receiver’s Output.) R outputs

Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt)

and u = φ(α) (this value can be obtained from the MPC views revealed to R).

10. (Sender’s Output.) S outputs X = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

)‖ρ‖(b1, . . . , bt).

5.7.3 Security Proof

Theorem 5.7.1. The constructions shown in Construction 5.7.1 and Protocol 5.7.1 is a PB-
OWF that supports predicates (as per Definition 5.7.1). Moreover, it only makes black-box
use of OWFs.

It follows immediately from the description that our construction makes only black-box
use of the OWF f , and it also satisfies the complement requirement as per Definition 5.7.1.
In the following, we establish the one-wayness in Lemma 5.7.1, soundness in Lemma 5.7.2,
and zero-knowledge property in Lemma 5.7.3.

Lemma 5.7.1 (One-Wayness). The function F f in Construction 5.7.1 is one-way as defined
in Definition 5.7.1.

Proof. We reduce one-wayness to the computationally-hiding property of Naor’s commitment
Com. Concretely, given a PPT machine Aow breaking one-wayness of F f , we will construct
a PPT machine ACom that breaks the security of Com. The machine ACom works in the
following way:

– It samples randomly the x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

), r = {b1, . . . , bt} and ρ defined
in Construction 5.7.1.

– It computes {[α]1, . . . , [α]n} as specified in Step 2 of Construction 5.7.1.
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– ACom forwards ρ (the first-round message for Naor’s commitment) and m0 = {0|[α]i|}i∈[n]\r
and m1 = {[α]i}i∈[n]\r to the Com challenger.

– The challenger picks a random bit b
$←− {0, 1} and commits to each element in mb in

parallel, using ρ as the first message. Denote the commitments from the challenger as
{c∗i }i∈[n]\r.

– ACom then computes {si}i∈[n] where si =

{
c∗i i ∈ [n] \ r

Comρ([α]i; γi) i ∈ r
.

– It internally invokes Aow on the input

Y ∗ := (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt),

and in turn receives a value X∗.

– ACom outputs 1 if and only if F f (X∗) = Y ∗.

We then argue that ACom wins the hiding game with non-negligible probability. There
are two possible cases depending on the Com challenger’s choice of b:

1. the challenger commits to m1: the Y ∗ is identically distributed as a F f (·) evaluation on a
random input. Thus, Aow will find a valid preimage X∗ with non-negligible probability,
which implies that ACom will guess b = 1 correctly with non-negligible probability. We
remark that there is a negligible chance that r ∩ {p1, . . . , pk} 6= ∅. But this can be safely
ignored without affecting the current proof.

2. the challenger commits to m0: note that m0 ∪ {vi}i∈[n]\r cannot be consistent VSS shares
as m0 contains only 0 strings. Moreover, it follows from the statistically-binding property
that {c∗b1}i∈[t] (the commitments to m0) cannot be interpreted as commitments to values
other than m0 (except with negligible probability). Since these {c∗b1}i∈[t] values are con-
tained in Y ∗, even an unbounded adversary cannot find and X∗ such that F f (X∗) = Y ∗

(except with negligible probability). Thus, in this case, ACom will output 1 with negligible
probability.

The above analysis shows that
∣∣Pr[ACom = 1|b = 1]−Pr[ACom = 1|b = 0]

∣∣ is non-negligible.
Therefore, ACom breaks the hiding property of Com.

Lemma 5.7.2 (Soundness.). Protocol 5.7.1 satisfies the soundness property specified in Def-
inition 5.7.1.

Proof. From our new perspective described at the beginning of Section 5.7.2, it is not hard
to see that the soundness follows from the same argument used for Lemma 5.4.2 except for
the following two caveats:

1. As mentioned earlier, the Encoding and Hardness-Inducing methods used in Proto-
col 5.7.1 (and Construction 5.7.1) are different from those in Protocol 5.4.1. As a result,
the receiver in Protocol 5.7.1 needs to check the consistency of the revealed VSS shares.
We need to argue that such checks suffice to ensure the existence of a preimage.
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2. Lemma 5.4.2 ensures the existence of a preimage X for the non-aborting Y learned by
R. In Protocol 5.7.1, R additionally output a value u; so we need to (additionally) argue
that u is the result of φ evaluated on the prefix α of X.

In the following, we address the above two points in order.

Addressing the First Point. To prove soundness for the current construction, we need to
argue formally that if S∗ cheats on the (c1, . . . , cn) values, R will abort with overwhelming
probability. Recall that the counterpart of ci’s in Protocol 5.4.1 are (y1, . . . , yn), where yi
is supposed to be f(xi) for some underlying xi; and in the proof of Lemma 5.4.2, we need
to prove Claim 5.4.1, which says that there are at most δn many “bad” yi’s (i.e., there are
no pre-images for them). In the current proof, we need an analog of this claim: here, the
ci’s are commitments to VSS shares; so we need to argue that if S∗ commits to more than k
“bad” shares (defined later), R will abort with overwhelming probability by checking t (out
of n) shares.

Formally, let ([α]∗1, . . . , [α]∗n) be the values committed in {ci}i∈[n] by S∗. We denote the
following event, which should be considered as an analog of the event “BadY ” defined in the
proof of Lemma 5.4.2:

– BadY : there are at least k = δn shares in {[α]∗i }i∈[n] that are “bad”, i.e., it is impossible
to convert these {[α]∗i }i∈[n] values to consistent VSS shares by modifying less than k = δn
of them (where 0 < δ < 1 is a constant).

We now show that, by checking a size-t random subset of them, R will catch at least one pair
of inconsistent shares with overwhelming probability. In the following, we prove it relying
on the “inconsistency graph” technique from [IKOS07].

Define a graph G with n vertices (corresponding to the n views). Assign an edge between
node i and j in G if the views [α]∗i and [α]∗j are inconsistent w.r.t. VSS. When BadY happens,
it must be that the minimum vertex cover of G has size at least k = δn. We would like
to argue that a random choice of t (a constant fraction of n) vertices will hit an edge with
overwhelming probability. For this, we use the well-known connection between the size of a
minimum vertex cover to the size of a maximum matching. Concretely, the graph G must
have a matching M of size at least δn

2
. (Otherwise, if the maximum matching contains less

than δn
2

edges, the vertices of this matching form a vertex cover of size less than δn.) If the
receiver R picks at least one edge of G, he will reject. The probability that the t vertices
(shares) that the receiver picks miss all the edges of G is smaller than the probability that
he misses all edges in M. As shown in the following, the latter is negligible.

We use P to denote the number of distinct pairs of vertices in G, i.e. P :=
(
n
2

)
. We use

T to denote the distinct pairs of t different vertices, i.e. T :=
(
t
2

)
. We use K to denote the
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size of M, i.e. K := δn
2

. Then, the following holds:

Pr[all edges in M are missed] =

(
P−K
T

)(
P
T

) =
(P −K − T + 1)(P −K − T + 2) · · · (P −K)

(P − T + 1)(P − T + 2) · · ·P

=

(
1− K

P − T + 1

)(
1− K

P − T + 2

)
· · ·
(

1− K

P

)
≤
(

1− K

P

)T
=

(
1− δ

n− 1

) t(t−1)
2

= e−Ω( t
2

n
) (5.50)

By our choice of parameters, t is a constant fraction of n. Therefore, the above probability
is negligible.

Remark 5.7.2 (Binding to α). It is worth noting that the above argument shows that there
are at least (n− k) consistent VSS shares. Since the parameter k is no larger than the VSS
threshold t (by our choice of parameter), these (n−k) consistent shares statistically bind the
sender to a unique α.

Addressing the Second Point. To handle this issue, Protocol 5.7.1 follows the black-
box commit-and-prove technique in [IKOS07, GLOV12, GOSV14]: in Stage 3, the sender
performs the MPC-in-the-head execution to compute φ(α); later in Stage 5 and Stage 7c,
the receiver checks a size-t random subset of the views of the MPC-in-the-head parties.
Following the same “inconsistency graph” argument as before, it is not hard to see that at
least (n − k) parties have consistent views w.r.t. the MPC execution for φ(α). Since k ≤ t
and the MPC protocol used in our construction is (n, t)-perfectly secure11, it follows that
φ(α) is computed honestly. More accurately, this means that at least (n− k) parties receive
the same φ(α) value as the output, where the α is the (unique) value reconstructed from
the VSS shares from these (n − k) parties’ input (i.e., the value to which S was bound as
described in Remark 5.7.2).

This finishes the proof for soundness.

Lemma 5.7.3 (Zero-Knowledge). Protocol 5.7.1 satisfies the zero-knowledge property de-
fined in Definition 5.7.1.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator
Sim for any PPT malicious receiver R∗. At a high-level, such a simulator can be constructed
as follows. Sim will use the simulator of the commit-and-prove protocol ΠZKCnP at Stages 4
and 8. We will show how this allows Sim to finish the interaction without knowing the
sender’s input x.

Formally, we will build 2 hybrids starting from the real execution between the honest
sender and R∗, and show that the second hybrid is essentially the simulator we want. We
use OutHi (i ∈ {0, 1}) to denote the output of hybrid Hi.

11Here, (n, t)-perfect robustness (Definition 2.7.5) will suffice.
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Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the
corrupted receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs.
This hybrid is exactly the real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 4, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication
withR∗, where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Definition 5.2.2).

– At Stage 8, instead of doing the proof honestly, H1 uses the strategy of Sim2 in its com-
munication with R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see
Definition 5.2.2).

OutH0

c
≈ OutH1 : This is due to the ZK property of ΠZKCnP.

The Simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim
is identical to H1 except for the following changes:

– Sim does not need to execute Stage 2;

– Upon receiving r = (b1, . . . , bt) at Stage 5, Sim sends r and ρ (received from Stage 1) to
the idea functionality FF,φ, and receives back

Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt), and φ(α).

– With {[α]bi}i∈[t] (the input to Pbi ’s) and φ(x) (the output of Pbi ’s), Sim run the MPC
simulator to generate the simulated views {ṽbi}i∈[t] for parties {Pbi}i∈[t]. Since the MPC
protocol is (n, t)-perfectly secure12, the simulated views are identically distributed to the
views in the real execution.

– At Stage 6, Sim sends to R∗ the values s = (s1, . . . , sn) and {(cbi , [α]bi , γbi , ṽbi)}i∈[t] (Note
that s and {(cbi , [α]bi , γbi)}i∈[t] are contained in Y ∗.)

We remark that, unlike H1, Sim does not need to know the input x to the sender; the
Y ∗ it obtained from FF,φ contains all the information it needs to finish its execution with
R∗. In particular, although the s and {(cbi , [α]bi , γbi)}i∈[t] values now come from the ideal
functionality FF,φ, they are identically distributed to the ones generated by the honest sender.
As mentioned earlier, the simulated views {ṽbi}i∈[t] are also identically distributed to the
views in the real execution. It then follows that the output of Sim is identical to H1.

This finishes the proof for Lemma 5.7.3.

12Here, semi-honest (n, t)-computational privacy (Definition 2.7.3) will suffice.
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ACM Symposium on Theory of Computing, pages 242–251, Chicago, IL, USA,
June 13–16, 2004. ACM Press. 4, 5, 93

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applica-
tions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM
Symposium on Theory of Computing, pages 187–196, Victoria, BC, Canada,
May 17–20, 2008. ACM Press. 9

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols
from one-way functions. In Omer Reingold, editor, TCC 2009: 6th Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Science,
pages 403–418. Springer, Heidelberg, Germany, March 15–17, 2009. 3, 6, 16, 36,
48

187



[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-
knowledge proofs. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 415–431,
Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany. 86

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In Moni
Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951
of Lecture Notes in Computer Science, pages 191–202, Cambridge, MA, USA,
February 19–21, 2004. Springer, Heidelberg, Germany. 16

[Ros12] Mike Rosulek. Must you know the code of f to securely compute f? In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 87–
104, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Ger-
many. 6, 7, 10, 115, 123, 124

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004: 1st Theory
of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 1–20, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg,
Germany. 1, 10, 123

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash func-
tions be based on general assumptions? In Kaisa Nyberg, editor, Advances
in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in Computer
Science, pages 334–345, Espoo, Finland, May 31 – June 4, 1998. Springer, Hei-
delberg, Germany. 1

[Ven14] Muthuramakrishnan Venkitasubramaniam. On adaptively secure protocols. In
Michel Abdalla and Roberto De Prisco, editors, SCN 14: 9th International
Conference on Security in Communication Networks, volume 8642 of Lecture
Notes in Computer Science, pages 455–475, Amalfi, Italy, September 3–5, 2014.
Springer, Heidelberg, Germany. 8

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51st Annual Symposium on Foundations of Com-
puter Science, pages 531–540, Las Vegas, NV, USA, October 23–26, 2010. IEEE
Computer Society Press. 3, 6, 25

[Wyn75] Aaron D Wyner. The wire-tap channel. Bell system technical journal,
54(8):1355–1387, 1975. 1, 6

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th Annual Symposium on Foundations of Computer Science, pages
162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer So-
ciety Press. 1

188



[Yer11] Arkady Boris Yerukhimovich. A study of separations in cryptography: new
results and new models. PhD thesis, University of Maryland, College Park,
Maryland, USA, 2011. 126

189


	Copyright
	Signature Page
	Abstract
	Dedication
	Table of Contents
	Acknowledgments
	Introduction
	Background
	Bounded-Concurrent MPC
	Angel-Based Universally-Composable MPC
	Functionally-Black-Box Zero-Knowledge Proofs
	Our Contributions
	For question:bounded-concurrent
	For question:angel-based-UC
	For question:fbb-zk


	Definitions and Preliminaries
	Basic Notation
	Commitment Schemes
	Extractable Commitments
	Zero-Knowledge Proofs and Arguments (of Knowledge)
	(Computationally) Secure Multi-Party Computation
	Verifiable Secret Sharing Schemes
	Information-Theoretic MPC and the MPC-in-the-Head Paradigm

	Black-Box Bounded-Concurrent MPC in Constant Rounds
	Overview of Our Techniques
	Black-Box (Constant-Round) Bounded-Concurrent OT
	Composition of OT with OT-hybrid MPC

	Preliminaries
	Shamir's Secret Sharing
	Non-Malleable Commitment Schemes.
	Bounded-Concurrent MPC with Interchangeable Roles

	Robust Zero-Knowledge Commit-and-Prove Protocols
	Robust Zero-Knowledge
	Constructions of -Robust ZK

	Straight-Line Extractable Commitments
	Proof of theorem:Straight-ExtCom-OT

	Our Bounded-Concurrent OT Protocol
	The High-Level Idea
	Protocol Description
	Security Proof

	Our Bounded-Concurrent MPC Protocol
	Security Proof For Our OT Protocol
	Simulator Simot
	Proof of Indistinguishability

	Security Proof for Our MPC Protocol
	Proof of Indistinguishability.
	Proof of lemma:hyb8

	Postponed Proofs
	The Second Half of the Proof for lemma:cheat
	Proof of lemma:hyb2
	Proof of lemma:hyb4
	Proof of lemma:hyb5
	Proof of lemma:hyb6
	Proof of claim:OT:hyb7-1


	Black-Box Angle-Based UC MPC in O"0365O(log) Rounds
	Overview of Our Techniques
	Existing Approaches
	Our Approach

	Preliminaries
	CCA Commitments
	Angel-Based Universally Composable (or UC-SPS) MPC

	A New CCA1:1 Commitment Scheme
	Proof for Synchronous Adversaries
	Proof for Non-synchronous Adversaries

	Our Black-Box CCA Commitment
	Black-Box Commit-and-Prove ZKAoK
	Black-Box Instantiation of Our CCA1:1 Commitment

	Angel-Based MPC in O"0365O(log) Rounds

	Toward a Unified Approach to Black-Box Zero-Knowledge Proofs
	Technical Overview
	Black-Box Separation
	Proof-Based One-Way Functions (and PRGs)
	Proof-Based Collision-Resistant Hash Functions
	Supporting Predicates

	Preliminaries
	Naor's Commitment Schemes
	Collision-Resistant Hash Families
	Black-Box Zero-Knowledge Commit-and-Prove
	The One-Oracle Separation Paradigm

	The Impossibility Results
	Meta-Functionally Black-Box Constructions
	The Main Theorem
	Proof of thm:prg-impossibility
	Proof of claim:prg-impossiblity-condition

	Proof-Based One-Way Functions
	Definition
	Our Construction
	Security Proof for Our PB-OWFs

	Proof-Based Pseudo-Random Generators
	Definition
	Our Construction
	Proof of Security

	Proof-Based Collision-Resistant Hash Families
	Definition
	Merkle Tree Related Notation
	Our Construction
	Proof of Security

	Proof-Based One-Way Functions Supporting Predicates
	Definition
	Our Construction
	Security Proof


	Bibliography

