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Today we will discuss three basic techniques of algorithm design:

Recursion

Geometric Series.

Repeating (till success)

We will use two famous problems to desmonstrate the ideas behind these techniques:

Hanoi Tower: for recursion

k-selection: for geometric series and repeating till success.
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Recursion
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Principle of recursion

When dealing with a subproblem (same problem but with a smaller input), consider it solved, and
use the subproblem’s output to continue the algorithm design.
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The Hanoi Tower Problem

Hanoi Tower

There are 3 rods A, B, and C.

On rod A, n disks of different sizes are stacked in such a way that no disk of a larger size is above a
disk of a smaller size.

The other two rods are empty.

A B C

.

.

.

1

n− 1
n

CSCI3160 (2025 Fall) Week 1: Basic Techniques 5 / 26



The Hanoi Tower Problem

Hanoi Tower

Permitted operation: Move the top-most disk of a rod to another rod.
Constraint: No disk of a larger size can be above a disk of a smaller size.
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Goal: Design an algorithm to move all the disks to rod B.
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On the Difficulty of the Hanoi Tower Problem

After some initial attempts, you will realize how hard this problem is.

Seems it is very challenging to design an efficient algorithm for that.

In this case, an important way of thinking in algorihtm design (and complexity theory) is to
ask:

Is there any inherent difficulty in solving the concerned problem?

Such a difficulty, if exists, is usually referred to as a “lower bound”, “infeasibility”, or
“impossibility” result. It is an important branch of research for both algorithm design and
computational complexity.
Some remarks:

This question is so natural. But people usually forget to ask when they really get stuck
with some hard problems.

Don’t insist on proving impossibility results unless you have some intuition to start with.

CSCI3160 (2025 Fall) Week 1: Basic Techniques 7 / 26



Intuition on the Difficulty

Our intuition on the inherent difficulty of the Hanoi Tower Problem:

Due to the constraint, we have to move the last disk to rob B, before we do that for other
disks.

However, to move the last disk, we have to move all other disks to rob C so we can start
to move the last disk

This problem exhibits a flavor of symmetry among the robs. And if we ignore the last disk,
it is a new problem of n − 1 disks. So, the last item essentially asks to solve the exactly
same problem but with one less disk.

Importantly, the above intuition is general, i.e., it always applies no matter what algorithm you
want to design.
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Illustrating the Intuition

Subproblem: Same problem but with n − 1 disks.
Consider the subproblem solved (i.e., assume you already have an algorithm for it).

Now, solve the problem with n disks as follows:

A B C
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Formalizing our Intuition

Suppose that our algorithm performs f (n) operations to solve a problem of size n. Clearly, f (1) = 1.
By recursion, we can write

f (n) ≥ 1 + 2 · f (n − 1)

Solving this recurrence gives f (n) ≥ 2n − 1.

Conclusion: The best time complexity (even for randomized algorithms) for solving the Tower
of Hanoi problem with n disks is Ω(2n).
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Geometric Series and Repeating till Success
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The k-Selection Problem

The k-Selection Problem: You are given a set S of n integers in an (possibly unsorted) array
and an integer k ∈ [1, n]. Find the k-th smallest integer of S .

For example, suppose that S = (53, 92, 85, 23, 35, 12, 68, 74) and k = 3. You should output 35.
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Definition of Rank

We will introduce a definition to assist our subsequent discussion:

The rank of an integer v ∈ S is the number of elements in S smaller than or equal to v .

For example, suppose that S = (53, 92, 85, 23, 35, 12, 68, 74). Then, the rank of 53 is 4, and that of 12
is 1.

Easy: The rank of v can be obtained in O(|S |) time.
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Consider the following task:

Task: Assume n to be a multiple of 3. Obtain a subproblem of size at most 2n/3 with exactly
the same result as the original problem.

Our goal is to produce a set S ′ and an integer k ′ such that

|S ′| ≤ 2n/3

k ′ ∈ [1, |S ′|]

The element with rank k ′ in S ′ is the element with rank k in S .

Note: it is possible that k ′ ̸= k .

We will give an algorithm to accomplish the task in O(n) expected time.

CSCI3160 (2025 Fall) Week 1: Basic Techniques 14 / 26



Next, we will focus on the following two claims:

1 There exists a (randomized) algorithm Asub that accomplish the previous task in O(n)
expected time. (This step utilizes Repeating till Success.)

2 We can utilize Asub to design a (randomized) algorithms that solves k-selection in O(n)
expected time. (This step utilizes Geometric Series.)

We will first see how the second item works. After that, we will present the algorithm Asub.
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Utilizing Asub

Asub(S , k) → (S1, k1). Note that |S1| = 2
3 · n.

Asub(S1, k1) → (S2, k2). Note that |S2| = (23)
2 · n.

Asub(S2, k2) → (S3, k3). Note that |S3| = (23)
3 · n.

. . .

Stop until the t-th repetition such that |St | = 1, i.e.,

(
2

3
)t =

1

n
.

You can of course solve for t from the above equation to calculate the running time of the
algorithm. But we will do it in an alternative way, utilizing the Geometric Series.
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Geometric Series
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A geometric sequence is an infinite sequence of the form

n, cn, c2n, c3n, ...

where n is a positive number and c is a constant satisfying 0 < c < 1.

Also recall the formula for the sum of finite geometric series:

St = n · 1− c t

1− c

It holds in general that
∞∑
t=0

c tn = lim
t→∞

St = lim
t→∞

n · 1− c t

1− c
=

n

1− c
= O(n).

The summation
∑∞

t=0 c
tn is called a geometric series.

Geometric series are extremely important for algorithm design.
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Algorithm

Using the repeating technique, now you should be able to convert the problem to a subproblem with
size at most ⌈2n/3⌉ in O(n) expected time.

Now, apply the recursion technique. We have already obtained a (complete) algorithm solving the
k-selection problem!

Think: How is this related to geometric series?
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Running Time Analysis via Geometric Series

The expected running time of our algorithm will be (note that we also use the linearity of the
expectation operator here)

a · n + a · 2
3
· n + a · (2

3
)2 · n + . . .+ a · (2

3
)t · n

where a is the constant hidden in the big-O notation (here we need to make it explicit).
This is no larger than

a · n + a · 2
3
· n + a · (2

3
)2 · n + . . .+ . . .

= a · n + a ·
∞∑
i=1

(
2

3
)i · n

= a · n + a · O(n) (by Geometric Series)

= O(n)
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Repeat till Success
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Algorithm for the Subproblem

The algorithm Asub:

1 Take an element v ∈ S uniformly at random.

2 Divide S into S1 and S2 where

S1 = the set of elements in S less than or equal to v ;
S2 = the set of elements in S greater than v .

3 If |S1| ≥ k , then return S ′ = S1 and k ′ = k ;
else return S ′ = S2 and k ′ = k − |S1|.

The algorithm succeeds if |S ′| ≤ 2n/3, or fails otherwise.

Repeat the algorithm until it succeeds.
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Algorithm for the Subproblem

Lemma: The algorithm succeeds with probability at least 1/3.

Proof: The algorithm always succeeds when the rank of v falls in [n3 ,
2
3n] (think: why?). This

happens with a probability at least 1/3, by the fact that v is taken from S uniformly at
random. □

In general, if an algorithm succeeds with a probability at least c > 0, then the number
of repeats needed for the algorithm to succeed for the first time is at most 1/c in
expectation.
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Running time of Asub

The algorithm Asub:

1 Take an element v ∈ S uniformly at random. (O(1) in our model. Why?)
2 Divide S into S1 and S2 where

S1 = the set of elements in S less than or equal to v ;
S2 = the set of elements in S greater than v .

(O(n) in our model.)

3 If |S1| ≥ k , then return S ′ = S1 and k ′ = k ;
else return S ′ = S2 and k ′ = k − |S1|.
(O(n) in our model.)

Thus:

Each execution cost O(n) (deterministic) time.

By the previous lemma, we need to repeat it for 3 times in expectation until it succeeds.

This implies that the expected running time is O(n) (think: why? - Linearity of expecta-
tion).
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Closing Remark (1/2)

It may seem almost magical that we can suddenly define the algorithm Asub, and it just
happens to work so well. At first glance, it feels as though the solution appears out of thin air,
without any clear path leading to its discovery.

In reality, the techniques we’ve introduced so far seems to primarily serve as tools for analysis,
rather than direct aids in constructing the algorithm itself. They help us understand why the
algorithm works, prove its correctness, and analyze its efficiency—but they don’t necessarily
guide us toward finding the algorithm in the first place.
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Closing Remark (2/2)

This phenomenon is actually common in algorithm design. For many non-trivial algorithms,
there is often a component that appears almost mysterious or unmotivated at first. These
seemingly magical insights are not accidents — they are the product of scientific creativity,
intuition, and experience.

In fact, this creative leap is what distinguishes routine problem-solving from true algorithmic
innovation. The “magic” is often the result of deep understanding, abstraction, and pattern
recognition developed over time. Once the core idea is discovered, the rest of the
work—rigorous analysis, optimization, and formal proof—can follow in a more systematic way.

So while it may feel surprising that Asub works so well, this is a reminder of a deeper truth: in
algorithm design, insight often precedes explanation.
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