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This is not a programming course.

Main take-away message from this course

Computer science is a branch of mathematics with its art reflected in the beauty of algorithms.
Programming knowledge is not necessary to study algorithms.

Many people believe that this branch holds the future of mankind.
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In mathematics (and hence, computer science) everything—including every term and symbol—must be
rigorous.

Computer science is a subject where we
1 first define a computation model, which is a simple yet accurate abstraction of a computing

machine;
2 then slowly build up a theory in this model from scratch.
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Is there a universally good model?
No. We need different models for different purposes.

Some examples:
Finite Automata: Used in regular expressions, compiler design, and more. They are clean,
relatively easy to understand, yet powerful enough for real-world applications.
Turing Machines: Fundamental to computational complexity theory. They (or at least the
vanilla version of them) are not sensitive to polynomial differences in time or space cost.
Boolean/Arithmetic Circuits: Commonly used in cryptography and electronic design au-
tomation (EDA). These represent a non-uniform computational model.
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How to Choose a Model for the Study of Algorithms? What Are the Criteria?
Mechanically Implementable:

This ensures our original goal—implementing algorithms to solve real-world problems.
It helps avoid logical paradoxes in the theory you established.

Sufficiently General: The model should be general enough to capture all natural steps
involved in solving problems strategically. Example: Finite automata are limited in power—
they cannot recognize the language L = {anbn | n ≥ 0} because they lack memory to
“count” and match the number of a’s and b’s. This makes them unsuitable for many
algorithmic problems that require more expressive computational models.
Sensitive Enough: The model should be able to capture fine-grained differences in resource
usage like time and space. Example: We often need to distinguish between algorithms with
time complexities like O(n2) and O(n log(n)), especially in performance-critical applications.
Turing machines, while foundational, treat all polynomial-time algorithms as equivalent in
complexity theory (due to polynomial-time reductions), making them too coarse for such
distinctions.
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Our Choice of the Computational Model

The Random Access Machine (RAM) model

A machine has a memory and a CPU.

Memory

An infinite sequence of cells, each of which contains the same number w of bits.
Every cell has an address: the first cell of memory has address 1, the second cell 2, and so on.
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The Random Access Machine (RAM) model

CPU

Contains a fixed number—8 in this course—of registers, each of which has w bits (i.e., same as a
memory cell).

...

1 2 3 ...

address

w bits

w bits

8 registers
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The Random Access Machine (RAM) model

CPU

Can do the following atomic operations:
1. (Register (Re-)Initialization)

Set a register to a fixed value (e.g., 0, −1, 100, etc.), or to the content of another register.
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The Random Access Machine (RAM) model

CPU

Can do the following atomic operations:
2. (Arithmetic)

Take the integers a, b stored in two registers, calculate one of the following and store the result
in a register:

a + b, a − b, a · b, and a/b.

Note: a/b is “integer division”, which returns an integer. For example, 6/3 = 2 and
5/3 = 1.
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The Random Access Machine (RAM) model

CPU

Can do the following atomic operations:
3. (Comparison/Branching)

Take the integers a, b stored in two registers, compare them, and learn which of the following
is true:

a < b, a = b, a > b.
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The Random Access Machine (RAM) model

CPU

Can do the following atomic operations:
4. (Memory Access)

Take a memory address A currently stored in a register. Do one of the following:
Read the content of the memory cell with address A into a designated register (overwriting the
bits there).

Write the content of a designated register into the memory cell with address A (overwriting the
bits there).
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The Random Access Machine (RAM) model

CPU

Can do the following atomic operations:
5. (Randomness)

RANDOM(x, y): Given integers x and y (satisfying x ≤ y), this operation returns an integer
chosen uniformly at random in [x, y], and places the random integer in a register.
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The Random Access Machine (RAM) model

An execution is a sequence of atomic operations.

Its cost (also called its running time, or simply, time) is the length of the sequence, namely, the
number of atomic operations.
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The Random Access Machine (RAM) model

A word is a sequence of w bits, where w is called the word length.
In other words, each memory cell and CPU register store a word.

Unless otherwise stated, you do not need to pay attention to the value of w in this course.
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Algorithm

An input refers to the initial state of the registers and the memory before an execution starts.
An algorithm is a piece of description that, given an input, can be utilized to unambiguously
produce a sequence of atomic operations, namely, the execution of the algorithm.

In other words, it should be always clear what the next atomic operation should be, given the
outcome of all the previous atomic operations.

The cost of an algorithm on an input is the length of its execution on that input (i.e., the number
of atomic operations required).
The space of an algorithm on an input is the largest memory address accessed by the algorithm’s
execution on that input.
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Deterministic Algorithms vs. Random Algorithms

An algorithm is deterministic if it never invokes the atomic operation RANDOM. Otherwise, the
algorithm is randomized.

On the same input, the cost of a deterministic algorithm is a fixed integer—it remains the same every
time you execute the algorithm.

The cost of a randomized algorithm, however, is a random variable. Even on the same input, the cost
may change each time the algorithm is executed.
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Example

1. do
2. r = RANDOM(0, 1)
3. until r = 1

How many times would Line 2 be executed? The answer is—“we don’t know” (in fact, the line may be
executed an infinite number of times)! Every time the above “algorithm” is executed, it may produce a
new sequence of atomic operations.
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Expected Cost of a Randomized Algorithm

Let X be a random variable that equals the cost of an algorithm on an input. The expected cost
of the algorithm on the input is the expectation of X.

Wait a Moment: It is a well-known fact that different distributions can share the same
expected value, yet behave quite differently. So,

Question: Why is expected running time a good metric for analyzing randomized algo-
rithms?
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Why Expected Running Time?
Why is expected running time a good metric for analyzing randomized algorithms?

1 Simplicity and Analytic Tractability:
The expected running time is usually easier to compute and analyze than other probabilistic
metrics (like the median, variance, or tail bounds).
It provides a single, concrete number that summarizes the algorithm’s typical performance.

2 Linearity of Expectation:
One of the most powerful tools in probability theory is the linearity of expectation. It allows us
to analyze complex algorithms by breaking them into smaller parts and summing their expected
costs—even if those parts are dependent.
This makes expected running time a very modular and flexible tool in algorithm design.

3 Concentration Bounds: If the running time of a randomized algorithm has very high vari-
ance, the expectation may be misleading. In most cases, this can be reconciled if we utilize
concentration bounds like

the Markov inequality, Chebyshev inequality, or Chernoff bounds
Next, we will use Markov inequality as an example. (We also talked about Chernoff bounds
during the first lecture. But that will not appear in quizzes/exams. )
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Markov’s Inequality

Markov’s Inequality provides an upper bound on the probability that a non-negative random
variable is much larger than its expectation.

Statement
Let X be a non-negative random variable and a > 0. Then:

Pr[X ≥ a] ≤ E[X]
a .
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Intuition Behind Markov’s Inequality

If the average value of X is small, the chance that X is very large must be small.

Example
Suppose E[X] = 5. Then:

Pr[X ≥ 25] ≤ 5
25 = 0.2

So there’s at most a 20% chance that X exceeds 25.
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Applying Markov to Running Time

Let T be the random variable for the running time of a randomized algorithm.
Suppose:

T ≥ 0
E[T] = µ

Then for any c > 1:
Pr[T ≥ c · µ] ≤ 1

c

Example
If µ = 10, then:

Pr[T ≥ 100] ≤ 1
10
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Example: Las Vegas Algorithm

A Las Vegas algorithm always gives the correct result, with a random running time.
Suppose E[T] = µ

Run the algorithm with a timeout of c · µ

Pr[timeout] ≤ 1
c

Run for 3µ steps ⇒ fail with probability ≤ 1
3

Repeat 3 times ⇒ succeed with good-enough probability 1 −
(1

3
)3 ≈ 0.963.
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